
Constructing an EJB Application in a WFM S

Jian-Wei Wang, Ta-Chun Lin, Huai-Jong Hsu, Feng-Jian Wang

Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C

E-mail: { jwwang,djlin,hjhsu,fjwang} @csie.nctu.edu.tw

Abstract
A workflow system provides enterprises the
automatic and paperless process management.
The idea of Enterprise JavaBeans (EJB) is to
utilize components from various vendors to
construct an application, which has the
characteristics of scalability, security,
distributed, and fast development. In the paper,
an EJB module and the enterprise beans are
implemented. Workflow designer may use this
module to invoke the business methods
defined in the enterprise bean on the outer
application server. The EJB module may
facilitate the development of a component of a
workflow system, reduce the designing time,
and reuse the existing components to fulfill the
function needed.

Keywords: workflow management, component
development, Enterprise JavaBeans (EJB)

1 Introduction
The workflow systems have come out for
decades. Designing a workflow system used
within an enterprise becomes an unavoidable
trend. In an internet workflow management
system of a single database server, the
performance is limited to network traffic, the
system's computing power, and the access
handle of the database server. For example,
Agentflow system [1] [2] originated from our
lab, is one of the internet workflow
management systems based on a database
server.
On the other hand, with the thirst of rapid
software development and deployment, the
growing requirements of easy manageability,
security, and software reusability are
emphasized. However, components used to
form a document in most workflow systems
are usually static. These components have their
own properties and can only do some
predefined jobs. Examples are the components
in Agentflow’s FormDesigner [1]. Therefore,
how to enhance a workflow system with a
component which provides the characteristics
mentioned above is an interesting issue.
A new software design paradigm has occurred
to solve above problems since the Enterprise
JavaBeans (EJB in short) specification [3][4]
first presented in 1998. The EJB architecture

defines a model to simplify the development of
distributed enterprise applications, which
develops and deploys the reusable components
via the network. Following the EJB
specification, component/application
developers do not have to beware of the
underlying network connection, database
access, transaction, multithreading, and other
complex low-level APIs when developing
applications. They can devote themselves to
business logic design. On the other hand, the
design of enterprise beans also affects the
performance a lot. Well analysis and design of
an enterprise bean can largely reduce the
network traffic in a system.
This paper proposes an EJB module which
introduces the features of EJB into Agentflow
system. An EJB module plugged into
Agentflow system becomes a bridge between
Agentflow system and EJBs. An electronic
form carrying the EJB module can utilize
business methods provided in an EJB which is
deployed to an application server. Such an
EJB module brings the advantages of
flexibility, reusability, rapid
component/application development, secure,
and safe transaction to Agentflow system.
Different Agentflow systems can also
communicate and exchange data through the
EJB module and its corresponding EJBs.
In this paper, section 2 discusses the
background of the workflow and EJB
architecture. Section 3 introduces
methodologies and design strategies of the EJB
module. Implementation of plug-in interfaces,
methods, and corresponding configurations of
application server are presented in section 4.
Section 5 describes the conclusion and future
work.

2 Background and M otivation
2.1 Enterpr ise JavaBeans
With EJB, one can quickly and easily construct
server-side components in Java by leveraging a
prewritten distributed infrastructure provided
by the industry. EJB is a server-side
component architecture that simplifies the
process of building enterprise-class distributed
component applications in Java.

1

N a m in g S e rv ice s
(s u c h a s L D A P)

H o m e O b je c t

E J B O b je c t
E n te rp ris e

B e a n

H o m e In te rfa c e

D a ta b a s e

R e m o te In te rfa c e

C lie n t

E J B C o n ta i n e r /
S e r v e r

Figure 1 The EJB model
An EJB is a server-side software component that
can be deployed in a distributed multi-tier
environment. An enterprise bean can comprise
one or more Java objects because a component
may be more than just a simple object.
Regardless of an enterprise bean’s composition,
the clients of the bean deal with a single exposed
component interface. This interface, as well as
the enterprise bean itself, must conform to the
EJB specification. The specification requires that
the beans expose a few required methods; these
required methods allow the EJB container to
manage beans uniformly, regardless of which
container the bean is running in.
A basic EJB architecture is shown in Figure 1
and consists of an EJB server/container, home
interface/object, remote interface/object, EJB
client, and auxiliary systems such as JNDI [5],
JTS [6], security, and so on.
• EJB Server/Container

The EJB server provides an organized
framework or execution environment in
which EJB containers can run. It makes
available system services for
multiprocessing, load balancing, and device
access for EJB containers.
An EJB container acts as the interface
between an enterprise bean and lower-level,
platform-specific functionality that supports
the bean. In essence, the EJB container is an
abstraction that manages one or more EJB
classes, while making the required services
available to EJB classes through standard
interfaces as defined in the EJB
specification. An EJB client never accesses
a bean directly. Any bean access is done
through the methods of the container-
generated classes, which, in turn, invoke the
bean’s methods.

Conceptually, an EJB server may have
many containers, each of which may contain
one or more types of enterprise beans.

• Home Interface and Home Object
In EJB specification, methods for locating,
creating, and removing instances of EJB
classes are defined in the home interface.
The home object is the implementation of
the home interface. The EJB developer first
defines the home interface for their bean.
Then the EJB container vendor provides
tools that automatically generate the
implementation code for the home interface
defined by the EJB developer.

• Remote Interface and Remote Object
The remote interface lists the business
methods available for the enterprise bean.
The EJBObject is the client’s view of the
enterprise bean and implements the remote
interface. While the enterprise bean
developer defines the remote interface, the
container vendor provides the tools
necessary to generate the implementation
code for the corresponding EJBObject.

• Enterprise Bean
The real enterprise bean itself is contained
within an EJB container and should never
be directly accessed by anyone but the
container. Although direct access may be
possible, this is inadvisable as it breaks the
contract between the bean and the container.
The EJB container should mediate all
enterprise bean accesses. For this reason, the
enterprise bean developer does not
implement the remote interface within the
enterprise bean itself. The implementation
code for the remote interface is generated
automatically by tools the container vendor
provides. This prevents inadvertent direct
accesses from clients or other beans.

2

Figure 2 WfMC reference model

• Client
EJB clients locate the specific EJB container
that contains the enterprise bean through the
Java Naming and Directory Interface
(JNDI). They then make use of the EJB
container to invoke bean methods. The EJB
client only gets a reference to an EJBObject
instance and never really gets a reference to
the actual enterprise bean instance itself.
When the client invokes a method, the
EJBObject instance receives the request and
delegates it to the corresponding bean
instance while providing any necessary
wrapping functionality.
The client uses the home object to locate,
create, or destroy instances of an enterprise
bean. It then uses the EJBObject instance to
invoke the business methods of a bean
instance.

2.2 Workflow Management System
2.2.1 Workflow Definition
Workflow Management Systems (WFMS) [8]
are specialized types of software systems used to
assist in computer supported collaborative work.
WFMS are often referred to as workflow
automation since they can automate the tasks or
activities undertaken by both people and
computer resources of an organization. WFMS
are often introduced since they support new
ways of working as businesses reengineer. They
are used in mission critical areas such as in
financial services for issuing loans and for
common administrative functions such as
processing purchase orders.
The Workflow Management Coalition (WfMC
in short) [9][10] describes workflow as:
“The computerized facilitation or automation of
a business process in whole or part”
and a Workflow Management System as:
“A system that defines, creates and manages the
execution of workflows through the use of

software, running on one or more workflow
engines, which is able to interpret the process
definition, interact with workflow participants
and, where required, invoke the use of IT tools
and applications.”
All workflow systems are process oriented [8].
A process definition, a representation of what
should happen, is created, and it typically
comprises some sub-processes. Each process and
sub-process comprises some activities. For
example, making a payment or not is an activity.
An activity consists of work items which utilize
workflow queue to schedule the processes and
cooperate with resources such as human or
computer. Figure 2 illustrates the WfMCs work
flow reference model. The original idea comes
from an initial study sponsored by the U.S.
Department of Defense which kick-start the
WfMC work in this area.
2.2.2 Agentflow Architecture
The workflow management system studied in
the paper is Agentflow system. The idea of
Agentflow system comes from “Software
Process Management Environment on the
Internet” [2]. The real system of Agentflow is
completed based on the n-tier software
architecture. Figure 3 illustrates the system
architecture.
• Client/User Interface

The main part of client/user interface is
Agenda [1], which is a client side program
of Agentflow. Users can install Agenda on
different platform and access Agentflow
server through internet. Users can also know
which jobs are currently needed to deal
with, which process can be initialized, and
which explicit programs needed to be
called, and how to trace the processes. Users
even do not require to install Agenda. They
can just download Agenda through Web.

3

Figure 3 Agentflow architecture
• Flow Designer/User Interface

The user interface for workflow designer,
named FormDesigner, takes the
responsibility for integrating software
component in the system. FormDesigner is
a graphical development tool to construct
electronic forms. It supports some basic
user-interface and database related
components, and user can build a form
with FormDesigner simply by drag-and-
drop the components.

• Workflow Server
Agentflow utilizes the concept of network-
centric computation. In this concept, the
network environment is thought of as a
super computer and every program which
user runs currently is directly downloaded
to the client side. The workflow server
plays the role of dispatching tasks to each
user. And each client can receive the
newest task list.

2.3 Motivation
Currently, Agentflow System, a WfMC model,
extends the editing power called FormDesigner
to design the artifact or data in the workflow
system. Here, an artifact is extended as an
interactive electronic form with components
predefined and developed. Within
FormDesinger, many built-in components are
available. These components are static, i.e. not
changeable. Developers are allowed to design
some components which can be plugged into
electronic form through “add component”
function.
As mentioned at sub-section 2.1, the EJB
component, might a good choice. After the
EJB component is plugged into the
FormDesigner, one can just design the
business logic defined as requirements and
skip the low-level network implementation,
which heavily reduces the development time.
Through the “deploytool” [11] or other tools

provided by application server, one can easily
manage the states of an application. Let
Weblogic Server [12] version 6.0 be an
example, it provides a user-friendly web-
interface by which administrators can modify
the application state, deploy applications and
setup the server. The consideration of security
is fulfilled with the secure hypertext transfer
protocol (HTTPS) provided by application
server. Last but not least, software reuse is the
fundamental of EJB architecture that reduces
the timely cost for developers.
This paper might provide a useful reference for
researchers to increase productivity through
integration of the EJB technology and
workflow system.

3 Agentflow Enhancement through EJB
The design of Agentflow and EJB
interoperability is proposed in this section. The
first sub-section introduces the architecture of
enhanced Agentflow FormDesigner with EJB
module. The second sub-section presents the
process of how the enterprise bean is designed,
connected, and used. In the third sub-section,
the strategies of designing EJBs are
introduced. The fourth sub-section shows the
method of authentication and authorization
access to enterprise bean. At last, a pattern is
introduced into EJB to improve the
performance of EJB implementation and
facilitate developer’s work.
3.1 Architecture of Enhanced Agentflow
FormDesigner with EJB M odule
All workflow systems are process-oriented,
and the most important part which comes
along with process flow is artifact. Artifacts,
also named documents or electronic forms, are
the information needed in processing
workflow. Within an Agentflow system,
developers use the FormDesigner to combine
existing components to design an artifact.

4

D atabase

E JB C on t ainer /
Ser ver

N am ing Serv ices(such as
L D A P)

EJB
M odule

JN D I

1.retrieve hom e
object ref erence

2.return home
object ref erence

H om e
Object

EJB Object
Enterprise

B ean

H ome
I nterf ace

Rem ote
I nterf ace

3.create a new
EJB object

5.return EJB
object ref erence

6. I nvoke busi ness
m ethod

4. Create EJB
object

7.delegate request
to bean

Figure 4 The process of EJB component module design

For remote components, which are used to
enhance FormDesigner’s function and reduce
development time, the EJB module is
introduced into Agentflow system.
Through the newly added EJB module, an
artifact can utilize the business methods
designed in an enterprise bean outside the
Agentflow system. Although invoking remote
methods generates additional network traffic,
when security, safe transaction, and distributed
computing are taken into consideration, EJB
module might provide a good, convenient, and
total solution.
On the other hand, inside the Agentflow, the
corresponding code of EJB button generally
needs to implement the following interfaces.
• I Pl ugI nComponent interface
• I Pl ugI nCal l back interface
• I Pl ugI nDesi gnTi mePol i cy

interface
• I Pl ugI nRunTi mePol i cy interface
3.2 Collaboration of FormDesigner and EJB
component
The goal of an EJB component module is to
bridge the function of EJB to Agentflow
system. The steps of plugging an EJB
component module into an Agentflow system
are listed below and shown in Figure 4.
• Collect data needed to perform action

from electronic form.
• Access naming service (1. and 2. in Figure

4).

• Create remote object (3. and 4. in Figure
4).

• Invoke business method (5. and 6. in
Figure 4).

• Activate real enterprise bean (7. in Figure
4).

• Return computation results to electronic
form.

The first step is to add an EJB module form to
the ToolBar. Some properties and methods are
then required, such as JNDI name and
methods, to connect between the module and
the outer EJB Server. After collecting all the
resources needed to initiate a method on the
server, the action listener of the module
receives the order and starts accessing the
naming service (LDAP) [13]. The naming
service looks up the JNDI name and returns a
home object reference. The EJB module then
uses this reference to create an EJBObject.
When previous moves complete, EJB module
may now invoke business methods on remote
interface which will be delegated to real
enterprise beans. Finally, the result is either
written into repository or returned to EJB
module which will then be filled into a column
or be displayed.
Agentflow component developers can benefit
from EJB approach. They need not handle the
low-level transaction and state management
details, multi-threading, connection pool, and
other complex low-level APIs. Actually, the

5

EJB container deals with the underlying
process, stub, skeleton, and remote method
invocation (RMI) [14] on behalf of the
enterprise bean developers. Therefore,
enterprise bean developers can focus on
designing the real business logic rather than
devoting too much time on coding the
communication protocol.
3.3 Design of Enterpr ise Bean
Designing the session and entity beans follows
the EJB specification. Namely, one shall
define the interfaces and implement the bean
code. And the design of enterprise bean affects
the performance of workflow process when a
transaction has complex business logic. Three
methods are presented to optimize the
enterprise bean.
(1) Use container-managed persistence as
possible
Container-managed persistence (CMP) [3] not
only reduces the coding effort but also enable
potential optimization within the container and
container-generated database access code.
Rather than coding JDBC operations in the
bean class, the container implicitly performs
all data operations on behalf of the bean. The
container has access to the in-memory buffer
of the bean which allows it to monitor for any
change in the buffer. Storing the buffer to the
database before committing a transaction can
be avoided if the buffer has not changed. This
avoids unnecessary expensive database calls.
Another instance of this optimization is called
f i nd methods, which
• Gets the reference of an entity bean from

the instance pool.
• Retrieves the primary key.
A find method usually follows a method which
retrieves the record data into the buffer. CMP
allows for optimizing the above two methods
into a single database access. In this way, the
access time might be shorter.
(2) Always cache references obtained from
lookups and find calls
Reference caching is useful for both entity
beans and session beans. JNDI l ookup calls
for obtaining EJB resources, such as
Dat aSour ces , bean references, or even
environment entries can be very costly, and it
is simple to avoid redundant l ookup calls. To
solve this problem, one can:
• Define a reference as an instance variable.
• Look up it in the method

set Ent i t yCont ext f or ent i t y
beans, or i n the method
set Sessi onCont ext for session
beans.

The set Ent i t yCont ext method is called
only once for a bean instance, so the time of

redundantly looking up all required references
can be saved, especially at the database access
methods, ej bLoad and ej bSt or e. These
two methods might be called frequently.
Calls to the find methods of other entity beans
are also heavyweight. These calls may or may
not be done at bean initialization callbacks
methods like set Ent i t yCont ext , so
developers shall write the code to cache the
references resulting from find methods
whenever applicable. If the reference is only
valid for the current entity, it is necessary to
clear the references before the instance gets
reactivated to represent other entities. This
should be done inside the ej bAct i vat e
method.
(3) Close all statements proper ly
During BMP implementations, dealing with
database access code never leaves the query
statements open after database access calls.
Each open statement corresponds to an open
cursor in the database. The garbage collector
claims the open statement and closes it at
garbage collection (GC) time eventually, while
users have no right to control over the time the
GC kicks in; namely, it is useless to enforce
GC by calling the Syst em. gc method.
Leaving statements open causes the database
to have excessive open cursors, which use
resources in the database. Thus, these
statements have to be closed to remove the
corresponding database resources for
performance.
There are various exceptions, two of which
may not be proper.
• It causes the later statements to be

ignored.
• It causes the later statements to be opened.
It is a necessary factor to catch these two kinds
of exceptions for an exception catch-up
algorithm.
3.4 Design Strategy
3.4.1 Secure Access to Enterpr ise Bean
According to the EJB specification, the EJB
container provides the implementation of the
security infrastructure; the developer and
system administrator define the security
policies. In the J2EE implementation, one can
utilize “ realmtool” [11] for creating the user
group, roles, and password. And through the
“deploytool” , he can setup the permission of
each business method in a table that
determines the access privilege of each role.
The realm is a collection of users that are
controlled by the same authentication policy.
First of all, a standalone Java application
(client) tries to access a protected business
method. The authentication service then
verifies the identification of the client. At the
third step, the client invokes business method

of the enterprise bean and the container
performs authorization. When the user group,
to which the client belongs, has the right to
access enterprise bean, the client is permitted
to invoke business methods in enterprise bean.
After setting up all the groups, roles, and their
relative permission of business methods, one
can call the enterprise bean’s method under the
protection of secure protocols. The intellectual
property and some private business methods
can be hidden from the client’s access.
Furthermore, the number of J2EE certificated
application servers grow day by day. So, most
EJB developers do not have to worry about the
application server’s support of authentication
and authorization.
3.4.2 Design Pattern
In fact, remote communication is no good as
expected in a distributed system. And thus the
biggest bottleneck is probably the network.
Even if running the system on a LAN, one may
still encounter delays when making calls
across the network. In general, the more one
eliminates remote communication, the better

the system will perform. Second, developers
should avoid lengthy distributed transactions.
In other words, the client should not interact
with the entity bean directly. Because entity
beans are transactional by nature, they
consume significant resources both on the
server and in the client. They store their state
information in a database and usually have
some sort of access control mechanism.
Because of these characteristics, function calls
to remote entity beans tend to be expensive.
Therefore, developers shall keep transactions
short and minimize the number of remote
method calls.
Figure 5 describes the transaction in which
multiple entity beans involve. In this
transaction, messages go back and forth
between transaction and entity beans that
produce a lot of network load. As mentioned
above, this situation should be avoided. The
Stateless Helper pattern[15] is then proposed
to solve this problem.

���������
	

�������������	����
�

��
	���	����������

��� ��������	������

 ��	�!
�#"%$�&('

����	�)*���+$�&,'

 ��	�!
�#".-�&('

 ��	�!
�#"*/
&('

����	�)*���
-�&,'

����	�)*����/
&,'

��� 0 ��	�	���"

12143%5�687�9�:�;*<�<

�*��=

Figure 5 Transaction with multiple entity beans
>�? @ A(BDC

E�F�G,B8HIG,J,CK@KLDB

MNBOCK@ CQPSR#A�G,B

TUT J,FVA�GWCKA�XUX

Y A,CKZ�LD[]\�^`_

F�A,C a�FVB]\(^`_

Y A,CKZ�LD[�b8^`_

Y A,CKZ�LD[8c�^`_

F�A,C a�FVB�b�^`_

F�A,C a�FVB8cD^`_

J(L YdY @ C CKA([

e�e]f8g(hIi j�kVl�mUm

B�A�n

opA�HIH�@ L�BSR#A�G,B

[�LDB�A�^q_

A�r�A(J(aDCKA�^`_

Figure 6 Stateless helper model

+getPlugInCallback() : plugin.IPlugInCallback
+setSystemCallback() : void

<<interface>>
plugin.IPlugInComponent

EJB Module

+getActionCommand() : String
+getImageIcon() : ImageIcon
+getJComponent()
+getPropertyList() : String[]
+getProperty() : Object
+setProperty() : void
+getPropertyEditor() : IPlugInPropertyEditor
+getTooltip() : String
+getImageFile() : String

<<interface>>
plugin.IPlugInCallback

+isResizable() : boolean
+isKeepRunning() : boolean
+saveAfter() : String

<<interface>>
plugin.IPlugInDesignTimePolicy

+behavior() : void
+getValue() : Object
+isNonvisible() : boolean
+isScrollable() : boolean
+reset() : void
+setValue() : void

<<interface>>
plugin.IPlugInRunTimePolicy

EJBPlugIn EJBJComponent

1
1

1

1..*

1
1

{Icon image, manifest,
property file }

Figure 7 Architecture of a plug-in EJB module

In Figure 6, a stateless session bean, which is
added as a wrapper of entity beans, accepts the
execut e() instruction from and returns the
done() instruction to the original transaction.
The session bean then takes the work of the
transaction inside the server instead of
internetworking. Obviously, the traffic load can
be reduced a lot with this mode, as long as the
data consistency can be protected. It is easy
inside a server-based system.

4 Implementation
Sub-section 4.1 will introduce the components
making up the EJB module which help to apply
EJBs to FormDesigner, and the interfaces must
be implemented to achieve the goal. Sub-section
4.2 is a simple case to indicate how the
mechanism works in real case.
4.1 EJB Module Implementation
Figure 7 depicts the architecture of a plug-in
EJB module. The EJB Module primarily
contains three parts. They are basic component
(e.g EJBPl ugi n), its corresponding
JComponent (e.g EJBJcomponent) and some
resources i.e icon image, manifest, and property
files. The basic component needs to implement
following two interfaces,
I Pl ugi nComponent and
I Pl ugi nCal l back . And interfaces,
I Pl ugi nDesi gnTi mePol i cy and
I Pl ugi nRunTi mePol i cy , for plug-in
component using policy would be implemented
in the corresponding JComponent.
I Pl ugi nComponent interface defines the
methods which are needed for gluing between
the plug-in component and the FormDesigner.

The methods defined in this interface are called
when the plug-in component is loaded and
registered into the FormDesigner. In the mean
time, I Pl ugi nCal l back interface provide
the related information of the plug-in
component, such as the action name of the
component, the properties of the component, and
so on.
Form has dual states, design state and running
state. During the design state, users draw an
electronic form in FormDesigner with pre-
defined components. Subsequently, during the
running state, users access the electronic form
designed by FormDesigner through Agenda
within a running workflow.
I Pl ugI nRunTi mePol i cy interface is used
to specify some values of a component needed
during run-time state. Comparatively,
I Pl ugI nDesi gnTi mePol i cy interface
defines methods offering values of a component
during design state.
With the module, a user can put the component
relating to EJB on an electronic form with
FormDesigner during design time, and invoke
them through JNDI services during run-time.
The interfaces implemented will accomplish the
task one need with the methods they offer.
4.2 An Example
For Example, in figure 8, users can add the
JComponent, MyEJButton, on the electronic
form with FormDesigner during design state.
After setting up the following features:
1. JNDI_Name of the home object registered

in naming service.
2. URL and port of the application server

which enterprise beans are deployed

7

3. the id and passwd of the role for special
access privilege

4. the methods to invoke in enterprise beans

Figure 8 Setup the connection between EJB module and enterprise beans

Information of the component would be set
into the electronic form. When the form is used
during run-time with Agenda, through the
component, EJBmodule could invoke the
methods in enterprise bean for various
purposes. Then we can claim that we have
reached the achievement using the components
which has been existed on application server
through EJB module.

5 Conclusions and Future Work
In this paper, an EJB module which can build
connection between Agentflow system and
EJB is presented. Through the characteristics
of EJB, the EJB module helps the Agentflow
system to reduce the development time of
components and cut down the coding effort of
underlying connection.
Workflow designers now have more choices to
finish a job rather than use only the
components in FormDesigner. And the EJB
components from various vendors can be
assembled to do a specific work needed by
designers. This research provides a useful
reference for researchers to increase
productivity through integration of the EJB
module and Agentflow system.
Nowadays, the Agentflow system uses the
centralized n-tier architecture, which may
suffer from the bottleneck of network traffic,
server’s computing power, and limitation of
CPU-to-Memory bandwidth, and so on.
Therefore, how to distribute the Agentflow
server in several platforms, which can share
the load and enhance fault tolerance, is a future
topic. Some related database accesses, which
can be grouped into a single transaction, are
not necessary to call the JDBC functions for
each access. The works in the future may
include how to retrieve these kinds of database
accesses, how to group them into a single

transaction, and implement it with session and
entity beans.

References
[1] Flowring Technology Corp., Agentflow
system, http://www.flowring.com.tw
[2] Bin-Shiang Liang, Shung-Bin Yan, Ching-
Hong Tsai, and Feng-Jian Wang, “Software
Process Management Environment on the
Internet”
[3] Sun Microsystem, “Enterprise JavaBeans
1.1 Specification” , in
http://java.sun.com/products/ejb/docs.html
[4] Sun Microsystem, “Enterprise JavaBeans
White Papers” , in
http://java.sun.com/products/ejb/white/
[5] Sun MicroSystem, “Java Naming and
Directory Interface (JNDI)”
[6] Sun MicroSystem, “Java Transaction
Service (JTS)”
[7] Richard Monson-Haefel, “Enterprise
JavaBeans” , second edition, O’Reilly, 2000
[8] Layna Fischer, “Workflow Handbook
2001” , Future Strategies Inc., Book division,
2001
[9] “The Workflow Management Coalition” ,
http://www.wfmc.org
[10] The Workflow Management Coalition,
“The Workflow Reference Model” , version
1.1, 1995
[11] Sun Microsystem, “Java 2 Platform,
Enterprise Edition” , in http://java.sun.com/j2ee
[12] BEA System, Inc., “BEA Weblogic
Server” ,
http://www.bea.com/products/weblogic/server/
index.shtml
[13] “Lightweight Directory Access Protocol
(LDAP)” , RFC 2551, 1997
[14] Sun Microsystem, “Java™ Remote
Method Invocation (RMI)” ,
http://java.sun.com/products/jdk/rmi/

[15] Jeff Gallimore, “ Tips on Implementing
Enterprise JavaBeans” , 1999,
http://www.devx.com/upload/free/features/java
pro/1999/10mid99/jg1399/jg1399.asp

