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Abstract—The survivable logical topology mapping problem in
an IP-over-WDM optical network is to map each link (u, v) in
the logical topology (at the IP layer) into a lightpath between
the nodes u and v in the physical topology (at the optical layer)
such that failure of a physical link does not cause the logical
topology to become disconnected. It is assumed that both the
physical and logical topologies are at least 2-edge connected.
Generating a survivable routing is an NP-complete problem. For
this problem two lines of investigations have been pursued in
the literature: the mathematical programming based approach
initiated by Modiano et al., and the structural approach initiated
by Kurant and Thiran and pursued further by Thulasiraman et
al. The mathematical programming approach is not scalable for
large networks, though it gives considerable insight into certain
important aspects of the problem. The structural approach re-
quires contraction and expansion of logical graphs and computing
link-disjoint lightpaths between pairs of nodes in the physical
topology. In this paper, we propose a novel approach based on
the concept of protecting spanning tree set of the logical topology.
The basic idea is to identify a set of spanning trees of the logical
topology and a routing of the logical links such that at least one
of these trees remains connected after a physical link failure.
Given a set of trees of the logical topology we first present three
optimization problems with varying degrees of difficulty relating
to this approach and discuss their Integer Linear Programming
formulations. We then consider the general case when both the
tree set and a survivable routing are to be determined. For this
general case we present a heuristic approach. We incorporate
in this heuristic a method to augment the logical topology with
additional links to guarantee a survivable routing. This approach
has several interesting features. It only requires a shortest path
algorithm and an algorithm to generate appropriate spanning
trees. It also provides a framework for generating a survivable
routing for the SRLG failure case. Contractions of graphs and
disjoint path generation are not required that greatly reduces the
computation time. We provide results of extensive simulations
conducted to evaluate our new approach.

I. INTRODUCTION

Wavelength-Division Multiplexing (WDM) technology is
widely applied in long-haul (next-generation) networks for its
high bandwidth and reliability. The communication between
two end nodes on WDM networks is carried out through a
path; namely a lightpath, which utilizes a single wavelength

through optical nodes like OXCs and OADMs without opto-
electro-optical (O-E-O) conversion on intermediate optical
nodes. Most data services nowadays, like HTTP, VoIP, FTP,
etc. apply a dominating protocol called IP. For an IP-over-
WDM network, the traffic on each IP link is carried through
a lightpath in the WDM network. For a multi-hop data trans-
mission in IP-over-WDM network as shown in Figure 1, the
traffic on 1-2-4 path in the IP network is implemented through
two lightpaths 1-2 and 2-3-4 in the WDM network. Given an
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Fig. 1. The example of potential lightpaths for logical link

IP-over-WDM network with physical and logical topologies
GP = (VP , EP ), GL = (VL, EL), where VP (VL) repre-
sents physical (logical) nodes/vertices and EP (EL) represents
physical (logical) edges/links, a survivable routing in such a
network is usually determined by the edge-disjoint lightpath
routing for logical edges. If any physical link failure does
not cause a cut in the logical topology, this routing is called a
survivable routing. For this problem two lines of investigations
have been pursued in the literature: the mathematical pro-
gramming based approach initiated by Modiano and Narula-
Tam [1], and the structural approach initiated by Kurant and
Thiran [2] and pursued further by Thulasiraman et al. [3][4].
The mathematical programming approach is not scalable for
large networks, though it gives considerable insight into certain
important aspects of the problem. The structural approach
requires contraction and expansion of logical graphs and
computing link-disjoint lightpaths between pairs of vertices
in the physical topology.

In this paper, we propose a novel approach using multiple
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logical spanning trees and their corresponding lightpath rout-
ing to guarantee survivability. This idea was motivated by the
general concept that an IP network will be survivable if there
exists a logical spanning tree after any single link failure in
the WDM network. Here we would like to find a set of logical
spanning trees such that any physical failure will only cut off
chords with respect to one or several spanning trees in the set.

The rest of this paper is organized as follows. In section II
we review previous related research works. In section III we
present several basic concepts and notations. Given a set of
trees of the logical topology in section IV we present three op-
timization problems with varying degrees of difficulty relating
to our approach and discuss their Integer Linear Programming
(ILP) formulations. One of these problems is also shown to be
equivalent to the minimum dominating set problem in bipartite
graphs. In section V we present a heuristic for the general case
when when both the tree set and a survivable routing are to
be determined. We incorporate in this heuristic a method to
augment the logical topology with additional links to guarantee
a survivable routing. In section VI we evaluate this heuristic
using extensive simulations. In section VII we conclude by
pointing out some future extensions of our work.

II. RELATED WORK

Survivability of a logical topology mapping (routing) can
be guaranteed if the lightpaths in the physical topology cor-
responding to this mapping are all link-disjoint. Since finding
mutually disjoint paths between multiple pairs of nodes is
NP-complete [5], survivable design of the logical topology
in an IP-over-WDM network is also an NP-complete problem.
Modiano and Narula-Tam [1] proved a necessary and sufficient
condition for survivable routing under a single failure in IP-
over-WDM networks and formulated the problem as an ILP.
Todimala and Ramamurthy [6] adapted the concept of Shared
Risk Link Group introduced in [7] and also computed the
routing through an ILP formulation. Extensions of the work
in [1] are given in [8] [9]. [8] introduced certain connectivity
metrics for layered networks and provided ILP formulations
for the lightpath routing problem satisfying these metrics. In
particular, they provided approximation heuristics for lightpath
routing maximizing the min cross layer cut metric. This metric
captures the robustness of the networks after multiple physical
link failures. Kan et al. [9] discussed the relationship between
survivable lightpath routing and the spare capacity require-
ments on the logical links to satisfy the original traffic de-
mands after failures. A common drawback of ILP approaches
is that they are not scalable as the network size increases.
Hence, heuristic approaches that provide approximations to
the optimal solutions are presented.

To handle the drawback of ILP approaches, Kurant and
Thiran [2] proposed the Survivable Mapping by Ring Trim-
ming (SMART) framework which first attempts to find link-
disjoint paths for the links of a subgraph of the given logical
graph. If such mappings exist, the subgraph is contracted. The
procedure is repeated until the logical graph is contracted to
a single node, or at some step disjoint mappings cannot be

found. In the former case, the resulting mappings define a
survivable mapping of the given logical graph. In the latter
case, they conclude that no survivable mapping of the given
logical graph exists. Another approach proposed by Lee et
al. [10] utilized the concept of ear-decomposition on bi-
connected topologies. One can show that this is, in fact,
a special variant of the framework given in [2], though it
was developed independently. Javed et al. obtained improved
heuristics based on SMART [11]. Using duality theory in
graphs, a generalized theory of logical topology survivability
was given by Thulasiraman et al. [3][4]. Thulasiraman et
al. [12] considered the problem of augmenting the logical
graph with additional links to guarantee the existence of a
survivable mapping. It has been shown in [12] that if the
physical network is 3-edge connected, an augmentation of
the logical topology that is guaranteed to be survivable is
always possible. An earlier work that discussed augmentation
is in [13].

III. BASIC CONCEPTS AND NOTATIONS

We let GP = (VP , EP ) and GL = (VL, EL) represent the
physical and logical networks, respectively. The relationship
between GP and GL is that VL ⊆ VP . We let e, f, g
represent physical edges and u, v represent logical edges. We
let i, j denote physical nodes and s, t for the logical nodes.
Edges and links as well as nodes and vertices will be used
interchangeably.

Without loss of generality, we keep the indices of logical
nodes same as their corresponding physical nodes. For a
logical edge u we find a path p in the physical topology whose
start and end nodes are the two corresponding nodes of u. We
call pu the lightpath of u.

We let i(u) and j(u) be the physical nodes of logical edge
u and s(e) and t(e) be the logical nodes of physical edge
e. If u connects s(u) and t(u), then, (s(u), t(u)) = u. The
lightpath provides the routing for a logical edge. The failure
of any physical edge in pu disconnects the lightpath of u and
its corresponding logical edge.

Definition 1: We define τ as a protecting spanning tree
of the logical network, if it is a spanning tree in the logical
network which remains connected after at least one physical
link failure. τC is the co-tree of protecting spanning tree τ
with τC = GL \ τ

Definition 2: We define T as a protecting spanning tree
collection, if its elements are protecting spanning trees in
the logical network. With a given protecting spanning tree
collection T , we let T C be a protecting spanning co-tree
collection, if its elements are the co-trees of elements in the
protecting spanning tree collection.
We now define the mapping and its corresponding co-mapping.

Definition 3: Mapping and co-mapping of substructure
in the logical network:

1. Mapping M maps each logical edge v to physical edges
by lightpath, that is, M : v → pv with v ∈ EL. (Note:
Here M(v) also stands for the edges in the path pv .)
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2. Mapping M maps protecting spanning tree τ to a sub-
graph of the physical network; that is, M : τ →⋃
v∈τ

M(v).

3. Mapping M maps protecting spanning tree collection,
T , to a subgraph of the physical network, M : T →⋃
τ∈T

M(τ).

4. Co-mapping MC maps logical edge v to a subgraph of
the physical network, MC : v → GP \M(v) with v ∈
EL.

5. Co-mapping MC maps protecting spanning tree τ to a
subgraph of the physical network, MC : τ → GP \⋃
v∈τ

M(v); that is, MC(τ) =
⋂
v∈τ M

C(v)

6. Co-mapping MC maps protecting spanning tree collec-
tion T to a subgraph of the physical network, MC : T →⋃
τ∈T

(GP \M(τ)); that is, MC(T ) =
⋃
τ∈T M

C(τ)

Note: As in (1) in Definition 3, in all cases M(·) stands for
all the edges in the corresponding subgraph.

Example 1: We illustrate the above definitions using Figure
2. τ1 = {(1, 2), (2, 6), (6, 4)}, τ2 = {(6, 1), (1, 4), (4, 2)}
are two protecting spanning trees in the logical network.
The lightpath p12 = {(1, 2)}, the lightpath p26 =
{(2, 5), (5, 6)}, the lightpath p64 = {(6, 5), (5, 4)}, the
lightpath p61 = {(6, 1)}, the lightpath p14 = {(1, 4)},
and the lightpath p42 = {(4, 3), (3, 2)}. The map-
ping and co-mapping of logical edge (2, 6) are p26 =
{(2, 5), (5, 6)} and {(1, 2), (1, 4), (1, 6), (2, 3), (3, 4), (4, 5)},
respectively. The mapping of the protecting spanning tree τ1,
M(τ1) = {p12, p26, p64} = {(1, 2), (2, 5), (4, 5), (5, 6)}. Its
co-mapping is MC(τ1) = {(1, 4), (1, 6), (2, 3), (3, 4)}. The
mapping of τ2, M(τ2) = {p61, p14, p42}, and its co-mapping
is MC(τ2) = {(1, 2), (2, 5), (4, 5), (5, 6)}. T = {τ1, τ2} is
a protecting spanning tree collection. The mapping of this
collection M(T ) = EP and its co-mapping MC(T ) = EP .
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Fig. 2. The lightpath, spanning tree, and mapping example

Note that the relationship between the mapping of logical
edge, protecting spanning tree τ , and the protecting spanning
tree collection T is as follows:

1. M(τ) =
⋃
v∈τ M(v) =

⋃
v∈τ p

v .
2. M(T ) =

⋃
τ∈T M(τ) =

⋃
v∈τ,τ∈T M(v) =⋃

v∈τ,τ∈T p
v .

Consider a routing of all the logical links in an IP-over-
WDM network. Let T be a collection of spanning trees in the

logical network. If a physical link (i, j) is in the set MC(τ)
for some spanning tree τ ∈ T then the failure of (i, j) does not
disconnect τ and so the logical network will remain connected
after the failure of (i, j).

Definition 4: If physical link (i, j) is in the set MC(τ) for
some spanning tree τ in a given collection T of spanning trees
then τ is said to protect (i, j). If for every physical link (i, j),
there exists a tree in a collection T which protects (i, j), then
the routing is a survivable routing.

Definition 5: Given a routing of the logical network, the
set [T ,M(T ),MC(T )] where T is a protecting tree set is
survivable if MC(T ) = EP . If MC(T ) 6= EP then the set
[T ,M(T ),MC(T )] is partially survivable.
We demonstrate an example of partial survivability in a given
IP-over-WDM network as follows.

Example 2: Following Example 1, let T = {τ1}. Then a
single failure in physical edges (1, 4), (1, 6), (2, 3), and (3, 4)
not utilized by τ1 does not disconnect logical tree branches
(1, 2), (2, 6), and (6, 4). Hence the logical network is con-
nected. Therefore, [T ,M(T ),MC(T )] is partially survivable
with M(T ) = {(1, 2), (2, 5), (4, 5), (5, 6)} and MC(T ) =
{(1, 4), (1, 6), (2, 3), (3, 4)}.

IV. PROTECTING SPANNING TREE SET OPTIMIZATION
AND ILP FORMULATIONS

In this section we present three optimization problems
with different levels of difficulty relating to protecting tree
set selection for survivability. For each problem we present
and discuss an ILP formulation. For all these optimization
problems we assume that a collection T of spanning trees of
the logical graph is given. We shall consider the general case
without this assumption in section V.

We let GP = (VP , EP ) and GL = (VL, EL) be the physical
and logical networks and T be a tree collection, which is a
logical spanning tree set.

First, we introduce variables which would be used in the
following formulations:
x`ij : binary variable, indicates whether the logical network is
protected by spanning tree ` after (i, j) failure
y`: binary variable, whether spanning tree ` is selected
zstij : binary variable, whether (s, t) is routed through (i, j)
β`ij : binary variable, whether (i, j) is protected by a selected
spanning tree `
gij : binary variable, equals 0 if physical link (i, j) failure
causes the disconnection of logical network

A. Minimum Protecting Spanning Tree Set Problem (MPTS)

Given a collection T of spanning trees of the logical graph,
and assuming that there exists a survivable routing under
which all the physical links are protected by the trees in
T , the Minimum Protecting Spanning Tree Set (MPTS) is to
determine a routing of all the logical links that minimizes the
cardinality of the subset of T that protects all the physical
links. The following is an ILP formulation of the MPTS
problem.

652



MPTS:

min
y

∑
`∈T

y`

s.t.
∑

(i,j)∈EP

zstij −
∑

(j,i)∈EP

zstji =

 1, if s = i, (s, t) ∈ EL
−1, if t = i, (s, t) ∈ EL
0, otherwise

(1)

zstij + zstji ≤ 1− x`ij , (s, t) ∈ `, ` ∈ T , (i, j) ∈ EP (2)

β`ij ≤ x`ij + x`ji, ` ∈ T , (i, j) ∈ EP (3)

β`ij ≤ y`, ` ∈ T , (i, j) ∈ EP (4)∑
`∈T

β`ij ≥ 1, (i, j) ∈ EP . (5)

y`,z
st
ij , β

`
ij , x

`
st, ` ∈ T , (s, t) ∈ EL, (i, j) ∈ EP (6)

We now discuss each equation/constraint in the ILP for the
MPTS problem.

Route (Lightpath) Selection: Equation (1) selects a light-
path for each logical link (s, t) using flow conservation prin-
ciple. zstij = 1 if (s, t) is routed through physical link (i, j);
otherwise, zstij = 0. Constraint (2) relates zstij and x`ij where
x`ij = 1 if tree ` protects physical link (i, j), and is zero,
otherwise.
x`ij = 0 if a logical link (s, t) ∈ ` is routed through physical

link (i,j) (that is, zstij + zstji = 1) then constraint (2) forces
x`ij = 0. If no logical link (s, t) ∈ ` is routed through physical
link (i, j) then x`ij = 1.

Protecting Property of Selected Spanning Trees: We let
variable β`ij indicate whether physical link (i, j) is protected
by a selected spanning tree ` or not. The value of β`ij must
satisfy the following:

i) If x`ij + x`ji = 1 and y` = 1, then, β`ij = 0 or 1.
ii) If x`ij + x`ji = 1 and y` = 0, then, β`ij = 0.

iii) If x`ij + x`ji = 0 and y` = 1, then, β`ij = 0;
iv) If x`ij + x`ji = 0 and y` = 0, then, β`ij = 0;

The above requirements will be satisfied by constraints (3),
(4), and (5).

To guarantee that each (i, j) is protected by a selected
spanning tree (that is, a tree ` for which y` = 1), we need∑

`∈T

(
x`ij + x`ji

)
y` ≥ 1, (i, j) ∈ EP .

This is a non-linear inequality. To linearize this, consider
the following.∑

`∈T

(
x`ij + x`ji

)
y`

≥
∑
`∈T

β`ij , because of (3) and (4)

=
∑

`∈T ,(x`
ij+x

`
ji)=1 and y`=1

β`ij , because β`ij = 0,

when (x`ij + x`ji) = 0 or y` = 0

≥1, because of (5).

Thus, constraints (3)-(5) guarantee that∑
`∈T

(
x`ij + x`ji

)
y` ≥ 1, for (i, j) ∈ EP . In other

words, constraints (3)-(5) provide the survivable condition
under any physical link failure. Thus constraints (3)-(5)
guarantee that the trees selected (that is, those trees ` for
which y` = 1) protect all the physical links.

B. Minimum Protecting Spanning Tree Set and Maximum Link
Protection Problem (MPTS-MaxLP)

Given a collection T of spanning trees of the logical graph,
Minimum Protecting Tree Set and Maximum Link Protection
Problem (MPTS-MaxLP) is to determine a routing of all the
logical links that minimizes the cardinality of the subset of T
that protects the largest number of physical links.

Let a pair (Γ,Φ) correspond to a routing of the logical
links if Φ is the cardinality of a subset of T that protects Γ
physical links under the routing. A solution to the MPTS-
MaxLP problem gives the pair (Γmax,Φmin) that has the
property

Γmax ≥ Γ and Φmin ≤ Φ

for any (Γ,Φ) for the given collection of logical spanning
trees.

This problem can be solved using a 2-stage approach as
follows. In the following, gij = 1 if after the failure of physical
link (i, j) at least one selected logical spanning tree remains
connected; otherwise, gij = 0.

Stage 1. With a given protecting spanning tree collection
T , determine max

∑
(i,j)∈EP

gij = M
Stage 2. Determine a minimum subset of the spanning
tree set such that

∑
(i,j)∈EP

gij ≥M .
The following are the formulations for these two stages:
Stage 1:

M = max
g

∑
(i,j)∈EP

gij

s.t. Constraints (1), (2), and (6)
gij ∈ {0, 1}, (i, j) ∈ EP (7)∑
`∈T

x`ij ≥ gij , (i, j) ∈ EP (8)

Stage 2:

min
y

∑
`∈T

y`

s.t. Constraints (1), (2), (3), (4), (5), (6), and (7),∑
(i,j)∈EP

gij ≥M (9)

∑
`∈T

β`ij ≥ gij , (i, j) ∈ EP (10)
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C. Minimum Dominating Set and the MPTS Problem

In the two optimization problems considered we seek a
routing of the logical links that achieves certain objectives.
A special case of the MPTS problem is to find a minimum
protecting tree set given a collection T of spanning trees as
well as a routing. We refer to this problem as MPTS-S. Note
that in the MPTS-S problem, the values of zstij are known and
so the ILP formulation of this problem is obtained by removing
equation 1 from the ILP formulation given in section IV-A for
the MPTS problem. This is given below.

min
∑
`∈T

y` (11)

s.t. constraints (2), (3)-(6) (12)

We can also give a graph theoretic formulation using the
concept of dominating set. Given an undirected graph G =
(V,E), a node v is said to dominate node w if v is adjacent
to v. A subset S of V is a dominating set of G if every vertex
u ∈ V −S is adjacent to a vertex in S. A dominating set with
minimum cardinality is called a minimum dominating set of
G.

Given a collection T of the spanning trees of a logical graph
and a routing of the logical links, let G be a bipartite graph
with bipartition (X,Y ). Let each node in X represent a tree
in T and each node in Y represent a physical link. Let edge
(u, v) ∈ E if and only if the tree corresponding to u ∈ X
protects the physical link represented by the node v ∈ Y .
Then it can be seen that a minimum dominating set of G is a
solution for the MPTS-S problem.

V. A SURVIVABLE ROUTING ALGORITHM BASED ON THE
SPANNING TREE SET: THE GENERAL CASE

In this section, we propose a survivable routing algorithm
based upon a spanning tree set. This algorithm produces a
survivable routing as well as the protecting spanning tree set.
We first introduce some extra notations for the algorithm. Let
PM be the collection of protecting spanning trees and their
corresponding lightpath routing; i.e., PM = {(τ,M(τ))}.
Let QM = {(e,Q(e))}, Q(e) = {u : e ∈ M(u), e ∈
EP , u ∈ EL}; i.e., QM is a collection of physical edges
and their corresponding logical edges whose lightpaths are
routed through these physical edges. Let w(e) be the weight
on physical edge e, w(u) be the weight on logical edge u,
and w(τ) =

∑
u∈τ w(u) be the weight of τ . α and β are the

penalty functions used to adjust the weight of physical and
logical links.

Algorithm 1 is comprised of two parts: generating a pro-
tecting spanning tree set and routing, and logical network
augmentation. The weight on logical and physical edges are
initialized to be 1 and the first logical spanning tree and
the corresponding lightpaths for tree branches are generated.
Following that, the weight of tree branches in selected logical
spanning tree τ and the weight of physical edges on the
lightpaths of τ are both increased. τ and its lightpath routing,
(τ,M(τ)), is then stored in PM and MC(i)(T ) is updated
with physical edges not utilized by τ .

Note that the purpose of assigning weights to logical links
is to avoid generating new logical spanning trees with edges
which are already in the spanning tree set. We also assign
weights to the physical links such that lightpaths for unmapped
branches in the newly selected logical spanning tree would also
avoid utilizing the same physical links in existing lightpaths.

After increasing the weight, the algorithm picks a minimum
weight logical spanning tree which has at least an unmapped
logical edge u and generates its lightpath pu. The path is gen-
erated using a shortest path algorithm. The above procedure
repeatedly selects spanning trees and generates lightpaths till
each logical edge has a designated lightpath.

For each tree in the spanning tree collection, there exists
physical edges not utilized by the routing of tree branches.
In other words, the failure of these physical edges will not
disconnect the spanning tree. Hence, the lightpath routing is
survivable if the union of unutilized physical edges of all
trees in the tree collection is EP ; otherwise, there exists a
physical edge whose failure will disconnect all trees in the
tree collection. In the latter case, logical augmentation plays
an important role to guarantee survivability. We use Figure 3
to illustrate the logical augmentation method.

Given Figure 3 as the physical topology, let the ini-
tial routing of logical edge u, where i(u) = 1 and
j(u) = 8, be M(u) = {(1, 4), (4, 5), (5, 8)}. Since an
edge-disjoint path pũ to pu does not exist, two edge-disjoint
paths for u, pu = {(1, 2), (2, 3), (3, 5), (5, 8)} and pũ =
{(1, 4), (4, 6), (6, 7), (7, 8)} are required to protect u from
failure. In other words, we need to add two parallel logical
edges with pu, pũ as their routing.

1 4 5 8

2 3

6 7

Fig. 3. Physical topology used to illustrate the logical augmentation method

With a given logical link u and its lightpath pu, we have
two types of mapping for logical augmentation: (1) single
augmentation: we augment logical link u with parallel link ũ
and assign pũ as a lightpath of ũ if there exists an edge-disjoint
path pũ to pu; and (2) double augmentation: if an edge-disjoint
lightpath of pu does not exist, then we augment two logical
links u1 and u2 parallel to u and generate two edge-disjoint
paths connecting i(u) and j(u) as their lightpaths, which
are used to replace the original logical link and its lightpath
routing.

VI. SIMULATION RESULTS

In this section, we present simulation results shown in
Table I, which demonstrate the efficiency of the protecting
spanning tree algorithm, Algorithm 1. The notations, PN (LN),
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Algorithm 1 The protecting spanning tree algorithm
Input: GP = (VP , EP ), GL = (VL, EL), T = ∅, QM =
∅, PM = ∅, wi(e) = 1, e ∈ EP , wi(u) = 1, u ∈ EL, i =
0.

1: Pick τ , T = T
⋃
τ

2: for all u ∈ τ do
3: Generate lightpath pu {pu forms M(τ)}
4: wi(e) = wi(e) + α,∀e ∈ pu
5: wi(u) = wi(u) + β
6: end for
7: if wi(e) = 1,∀e ∈ EP then
8: MC(i)(T ) = MC(i)(T )

⋃
{e}

9: end if
10: PM = PM

⋃
{(τ,M(τ))}

11: while T 6= EL do
12: Generate a minimum weight protecting spanning tree,

τ∗, i.e., w(τ∗) = min
τ∈GL

{w(τ)}
13: if T = T

⋃
τ∗ then

14: Go to 11
15: else
16: T = T

⋃
τ∗

17: for all u ∈ τ∗,M(u) = ∅ do
18: Generate the minimum weight lightpath pu

19: wi+1(e) = wi(e) + α,∀e ∈ pu
20: end for
21: end if
22: for all u ∈ τ∗ do
23: wi+1(u) = wi(u) + β
24: end for
25: for all e ∈ EP do
26: if wi+1(e) = wi(e) then
27: MC(i+1)(T ) = MC(i)(T ) ∪ {e} {Update the

unutilized physical edge set}
28: end if
29: end for
30: T = T ∪ τ∗, PM = PM ∪ {(τ∗,M(τ∗))}
31: if MC(i+1)(T ) = EP then
32: TERMINATE {Found survivable routing}
33: else
34: i = i + 1
35: end if
36: end while
37: Generate all-utilized physical edge collection Ωi,Ωi =

EP \MC(i)(T )
38: Generate LM , the mapping of the physical edge e to

logical edges whose lightpaths are routed through e,
LM = {(e, LM(e))}, LM(e) = {u : e ∈M(u), e ∈ Ωi}

39: for all e ∈ Ωi do
40: for all u ∈ LM(e) do
41: if ∃ path pũ edge-disjoint to pu then
42: Add a logical edge ũ parallel to u, M(ũ) = pũ

43: else
44: Add two logical edges ũ1, ũ2 parallel to u in GL
45: Map ũ1, ũ2 into edge-disjoint lightpaths
46: Remove u from GL and M(u) from M(T )
47: end if
48: end for
49: end for

PC (LC), and PE (LE) used in Table I denote the number
of physical (logical) nodes, connectivity of physical (logical)
networks, and the number of physical (logical) edges, respec-
tively. Survivability index, Surv%, represents the percentage
of physical edges whose failure do not disconnect the logical
network. AugLog denotes the average number of augmented
logical edges to guarantee survivability of each physical-
logical topology pair; and TreeNo represents the average
number of spanning trees generated by Algorithm 1.

In the simulation, we first generated random physical
topologies, where the number of physical nodes were 10, 20,
. . ., or 50 and the topologies had connectivity 3, 4, 5, or 6. The
logical topologies corresponding to the physical topologies
had (0.5 * |physical nodes|) number of nodes and we let the
logical connectivity to be 3, . . ., or |physical connectivity|.
We generated 300 physical and logical networks for each
setting (PN,LN,PC,LC), applied our algorithm, and put
the average in Table I.

Analyzing the results shown in the tables we have the
following observations. Firstly, the survivability index showed
that a very high percentage of physical link failure would
not disconnect the logical network with the lightpath routing
generated by Algorithm 1. Second, the simulation results
show that a survivable routing is achieved with only a small
number of trees. In most cases only a small number of link
augmentations, AugLog, is required to guarantee a survivable
routing. Surv% indices close to 100% are denoted as ≈ 100.

VII. CONCLUSION

In this paper, we proposed a novel approach to the surviv-
able logical topology mapping problem in an IP-over-WDM
optical network based on the concept of protecting logical
spanning tree set. Given a set of trees of the logical topology
we first presented three optimization problems with varying
degrees of difficulty relating to this approach and discussed
their ILP formulations. We then considered the general case
when both the tree set and a survivable routing are to be deter-
mined. For this general case we present a heuristic approach.
We incorporate in this heuristic a method to augment the
logical topology with additional links to guarantee a survivable
routing. We presented simulation results to demonstrate the
efficiency of this new approach.

The new approach has several interesting features. It only
requires a shortest path algorithm and an algorithm to generate
appropriate spanning trees. An algorithm such as the one
in [14] that generates spanning trees one at a time in a simple
and elegant manner is an appropriate candidate for use in this
approach. Though this spanning tree generation algorithm was
not used in Algorithm 1, incorporating it in Algorithm 1 will
be an interesting future direction of research.

Moreover, the approach identifies a group of spanning trees
of the logical graph and a lightpath routing of the logical links.
Each tree is identified with a group of physical edges such
that failure of one or more of these edges will leave at least
one of the trees remains connected, guaranteeing survivability
of the logical topology against these group failures. Thus the
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PN LN PC LC PE LE Surv% AugLog TreeNo
10 5 3 3 15 8 99.9996 3.16667 3.14667

4 3 20 8 99.9999 3 3.17333
4 4 20 10 100 0 3
5 3 25 8 100 0 3.14333
5 4 25 10 100 0 3
6 3 30 8 100 0 3.13667
6 4 30 10 100 0 3

20 10 3 3 30 15 99.9954 3.04839 5.31333
4 3 40 15 99.9988 2.95238 5.20333
4 4 40 20 100 0 3.08667
5 3 50 15 99.9999 3 5.33
5 4 50 20 100 0 3.09333
5 5 50 25 100 0 3.53
6 3 60 15 ≈ 100 3 5.30333
6 4 60 20 100 0 3.07333
6 5 60 25 100 0 3.49667
6 6 60 30 100 0 3.07667

30 15 3 3 45 23 99.9916 2.99123 6.21333
4 3 60 23 99.9972 3.21569 6.16333
4 4 60 30 99.9997 4.85714 3.05
5 3 75 23 99.9997 3 6.17667
5 4 75 30 100 0 3.06667
5 5 75 38 100 0 3.24333
6 3 90 23 99.9999 3 6.17
6 4 90 30 100 0 3.06333
6 5 90 38 100 0 3.25
6 6 90 45 100 0 3.07667

40 20 3 3 60 30 99.9863 2.87838 9.5
4 3 80 30 99.996 3.26923 9.02333
4 4 80 40 99.9998 5.35714 3.03333
5 3 100 30 99.9994 3.01887 9.32667
5 4 100 40 ≈ 100 4 3.03333
5 5 100 50 100 0 3.22333
6 3 120 30 99.9997 2.83333 9.34667
6 4 120 40 ≈ 100 4 3.04667
6 5 120 50 100 0 3.20333
6 6 120 60 100 0 3.04

50 25 3 3 75 38 99.9829 3.02161 9.37
4 3 100 38 99.9952 3.54713 9.54
4 4 100 50 99.9999 6.69231 3.05333
5 3 125 38 99.9995 3.26786 9.27667
5 4 125 50 ≈ 100 4 3.02333
5 5 125 63 100 0 3.15333
6 3 150 38 99.9996 3.06 9.36333
6 4 150 50 ≈ 100 4 3.03333
6 5 150 63 ≈ 100 7 3.16333
6 6 150 75 100 0 3.04333

TABLE I
COMPUTATIONAL RESULTS

algorithm provides a framework for generating a survivable
routing for the SRLG (Shared Risk Link Group) failure case.

The simulation results show that a survivable routing is
achieved with only a small number of trees. In most cases only
a small number of link augmentations is required to guarantee
a survivable routing.

We believe that the approach along with mathematical
programming [1] and structural [2][3][4] approaches provide
several insights into the survivable logical topology routing
problem in an IP-over-WDM optical network.
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