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A B S T R A C T   

The survivable logical topology mapping (SLTM) problem in IP-over-WDM networks is to map each link in the 
logical topology (IP layer) onto a lightpath in the physical topology (optical layer) such that a failure of a 
physical link does not cause the logical topology to become disconnected. This problem is known to be NP- 
complete. For this SLTM problem, two lines of investigations have been reported in the literature: the mathe
matical programming approach [1] and the structural approach introduced by Kurant and Thiran in [2] and 
pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical 
foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic 
strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient 
slicing of elastic optical networks. We conclude with a comparative evaluation, based on simulations, of the 
different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM 
optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as 
smart power grids.   

1. Introduction 

Wavelength-Division Multiplexing (WDM) technology is widely 
applied in long-haul networks because of its high bandwidth and reli
ability. The communication between two end nodes on a WDM network 
is carried out through a path, namely a lightpath, which utilizes a single 
wavelength through optical nodes like optical cross-connects and optical 
add-drop multiplexers without opto-electro-optical conversion on in
termediate optical nodes. Most data services nowadays, like HTTP, VoIP, 
FTP, etc., apply a dominating protocol called Internet Protocol (IP). For 
an IP-over-WDM network, the traffic on each IP link is carried through a 
lightpath in the WDM network. For a multi-hop data transmission in IP- 
over-WDM network as shown in Fig. 1, the traffic on the 1-2-4 path in 
the IP network is implemented through two lightpaths 1–2 and 2-3-4 in 
the WDM network. 

Given an IP-over-WDM network with physical and logical topologies 

GP = (VP, EP) and GL = (VL, EL), where VP(VL) represents physical 
(logical) nodes/vertices and EP(EL) represents physical (logical) edges/ 
links, a survivable routing in such a network is usually determined by 
edge-disjoint lightpath routing for logical edges. If any physical link 
failure does not disconnect the logical topology, this routing is called a 
survivable routing. For this problem two lines of investigations have 
been pursued in the literature: the mathematical programming based 
approach initiated by Modiano and Narula-Tam [1], and the structural 
approach initiated by Kurant and Thiran [2] and pursued further by 
Thulasiraman et al. [3–5]. The mathematical programming approach is 
not scalable for large networks, though it gives considerable insight into 
certain important aspects of the problem. The structural approach re
quires contraction and expansion of logical graphs and computing 
link-disjoint lightpaths between pairs of vertices in the physical topol
ogy. This approach requires finding a set of mutually disjoint paths 
between the nodes of a small subset of logical links, and so considerably 
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reduces the complexity. 
The structural approach was studied by Thulasiraman et al. [3–5] 

using the concept of circuit/cutset duality. In this paper we present an 
integrated treatment of the results in Refs. [3–5]. We next present a 
review of literature in this area. 

2. Related work 

2.1. Mathematical programming based approach 

Survivability of a logical topology mapping (routing) can be guar
anteed if the lightpaths in the physical topology corresponding to this 
mapping are all link-disjoint. Since finding disjoint paths between pairs 
of nodes is NP-complete [6], survivable design of the logical topology in 
an IP-over-WDM network is also an NP-complete problem. Modiano and 
Narula-Tam [1] proved necessary and sufficient conditions for surviv
able routing under a single failure in IP-over-WDM networks and 
formulated the problem as an ILP. Todimala and Ramamurthy [7] 
adapted the concept of SRLG and computed the routing through an ILP 
formulation. Extensions of the work in Ref. [1] are given in Refs. [8,9]. 
Lee et al. [8] introduced certain connectivity metrics for layered net
works and provided ILP formulations for the lightpath routing problem 
satisfying these metrics. In particular, they provided approximation al
gorithms for lightpath routing maximizing the minimum cross layer cut 
metric which captures the robustness of the networks after multiple 
physical link failures. Kan et al. [9] discussed the relationship between 
survivable lightpath routing and spare capacity requirements on the 
logical links to satisfy the original traffic demands after failures. Lin 
et al. [10,11] introduced the concepts of weakly and strongly survivable 
routings and provided MILP formulations for generating a logical to
pology routing and rerouting (after a physical link failure) to maximize 
the total satisfied demand before and after a failure. They also consid
ered the question of spare capacity minimization to maximize the de
mand satisfaction. Lin et al. [12] considered how lightpaths used for 
survivable routing can be combined with monitoring trails [13,14] to 
achieve localization of physical link failures. Zhou et al. [15] provided 
MILP formulations for cross-layer survivability under multiple metrics, 
including the cross-layer cut introduced by Lee and Modiano [8]. These 
formulations have been directly adopted in the study of the survivable 
network virtualization problem [16,17]. In Ref. [18] et al. introduced 
the concept of logical protecting spanning trees and provided MILP 
problems using column generation technique that can be adopted to 
study other classes of network optimization problems encountered in 
communication network planning and design. 

2.2. Structural Approach 

A common drawback of ILP approaches is that they are not scalable 
as the network size increases. Hence, heuristic approaches that provide 
approximations to the optimal solutions are presented. To handle the 
drawback of ILP approaches, Kurant and Thiran [2] proposed the Sur
vivable Mapping by Ring Trimming (SMART) framework which first 
attempts to find link-disjoint paths for the links of a subgraph of the 
given logical graph. If such a mapping exists, the subgraph is contracted. 
The procedure is repeated until the logical graph is contracted to a single 
node, or at some step disjoint mappings cannot be found. In the former 

case, the resulting mappings define a survivable mapping of the given 
logical graph. Another approach proposed by Lee et al. [19] utilized the 
concept of ear-decomposition on bi-connected topologies. One can show 
that this is, in fact, a special variant of the framework given in Ref. [2], 
though it was developed independently. Javed et al. [20,21] obtained 
improved heuristics based on SMART. Using duality theory in graphs, a 
generalized theory of logical topology survivability was given by Thu
lasiraman et al. [3,4]. Thulasiraman et al. [22] considered the problem 
of augmenting the logical graph with additional links to guarantee the 
existence of a survivable mapping. It has been shown in Ref. [22] that if 
the physical network is 3-edge connected, survivability-guaranteed 
augmentation of the logical topology is always possible. An earlier 
work that discussed augmentation is in Ref. [23]. 

In [24] Deng et al. presented an MILP formulation for the SLTM 
problem which used a novel technique to test the connectivity of a 
logical topology when a physcial link fails. We believe that this formu
lation can serve as a good benchmark for comparing different algorithms 
reported in the literature. In two related works [25,26], Zhu et al. pro
vided an MILP formulation for cloud network mapping to survivable 
multiple failures using the concept of protection trees introduced in 
Ref. [18]. 

Cohen and Nakibly [27] studied the problem of designing survivable 
topologies in the face of uncertain traffic knowledge. They also point to 
several works on the optial topology design problem that complement 
the work provided in this section. 

In this paper, we present an integrated treatment of our works in 
Refs. [3–5] on the structural approach for the SLTM problem. In these 
works we generalized, using the duality between circuits and cutsets of a 
graph, the methodology provided by Kurant and Thiran [2] for the SLTM 
problem. We provided a unified algorithmic framework which included 
four algorithmic frameworks as special cases. We also presented results 
of an analytical study on the robustness of these frameworks with 
respect to their ability to provide logical topology mappings that survive 
multiple physical link failures. This review paper is self contained with 
adequate background material on graph theoretic concepts required to 
follow the developments discussed. 

For graph theoretic concepts not covered in this paper see Ref. [28]. 

3. Circuits and cutsets duality 

Duality between circuits and cuts in a graph has been extensively 
studied and plays a fundamental role in several applications [29,30]. 
Deleting an edge and contracting an edge are also dual operations. In 
this section, we present several concepts and results relating to this 
duality. These results provide the basis for the algorithmic frameworks 
presented in the following sections. 

Consider a connected undirected graph G(V, E) with vertex set V and 
edge set E. Without loss of generality, we assume that there are no 
parallel edges or self loops in G. Let G have |V| = n vertices (or nodes) 
and |E| = m edges (or links). 

A connected acyclic subgraph of G containing all the n nodes is called 
a spanning tree T of G. The edges of a spanning tree T are called branches 
of T. The remaining edges of G are called chords with respect to T. We 
may also refer to chords as non-tree edges. 

Consider a partition (S, S) of vertex set V. Here S denotes the com
plement of S ⫅ V, i.e. S = V − S. Then the set of edges with one node in S 
and the other in S is called a cut of G. For example, consider the graph G 
in Fig. 2a. Here the vertices are numbered 1, 2, …, 6. The bold edges in 
this figure denote the branches of a spanning tree T of G and the dotted 
edges are the chords of this tree. The partition (S, S) with S = {1, 4, 6} 
and S = {2,3,5} defines the cut shown in Fig. 2b. 

Adding a chord c to a spanning tree T produces exactly one circuit. 
This is called the fundamental circuit (in short, f-circuit) of T with respect 
to the chord c. We denote this circuit as B(c). For example, if we add 
chord c1 to the tree in Fig. 2a we get the fundamental circuit B(c1) 

Fig. 1. An example of potential lightpaths for logical link.  
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consisting of the edges {c1, b1, b2, b3}. Similarly, if we add chord c4 to the 
tree in Fig. 2a we get the fundamental circuit B(c4) that contains edges 
{c4, b2, b3, b4, b5}. 

Suppose we remove a branch b from a spanning tree T, then the tree T 
gets disconnected resulting in two trees (not spanning) T1 and T2. The 
sets of nodes in T1 and T2 define a partition of V. The corresponding cut 
is called the fundamental cutset (in short, f-cutset) of T with respect to 
branch b. For example, if we remove the branch b3 from the tree T of 
Fig. 2a then we get trees T1 and T2 given by branches {b1, b2, b5} and 
{b4}, respectively. The corresponding fundamental cutset Q(b3) consists 
of the edges {b3, c1, c3, c4, c5, c6}. Note that the subgraphs induced by the 
vertex sets of T1 and T2 are both connected. Cuts with this property are 
also called primary cuts [7]. 

Given a spanning tree T with branches {b1, b2, …, bn− 1} and chords 
{c1, c2, …, cm− n+1}, then the fundamental circuit matrix Bf =

[bij](m− n+1)×(m) has one row for each chord and one column for each edge. 
The entry bij is defined as follows: 

bij =

{
1, if B(ci) contains edge j

0, otherwise.

Arranging the rows of Bf such that the jth row (j ≤ m − n + 1) cor
responds to the fundamental circuit B(cj) and arranging the columns in 
the order {c1, c2, …, cm− n+1, b1, b2, …, bn− 1}, we can write the Bf matrix 
as Bf = [U|Bft], where U is the unit matrix of size (m − n + 1). For 
example, the Bf matrix with respect to the spanning tree T of Fig. 2a is 
given in (1). 

(1)  

In a similar manner the fundamental cutset matrix with respect to the tree 
T can be defined as Qf = [qij](n− 1)×(m). Qf has (n − 1) rows, one for each 
fundamental cutset and one column for each edge. The entry qij is 
defined as 

qij =

{
1, if Q(bi) contains edge j

0, otherwise.

Arranging the rows of Qf such that the jth row corresponds to f-cutset 
Q(bj) and the columns correspond to edges in the order {b1, b2, …, bn− 1, 
c1, c2, …, cm− n+1}, the Qf matrix can be written as Qf = [U|Qfc]. For 
example, the Qf matrix with respect to the tree T of Fig. 2a is given in (2). 

(2) 

A subgraph (for example, a circuit or a cut) can be represented by a 
binary vector with m entries, one entry for each edge, and with an entry 
equal to 1 if the corresponding edge is present in the subgraph. Thus, 
rows of Bf and Qf are the binary vectors representing the fundamental 
circuits and fundamental cutsets. For convenience, in the following we 
will use the same symbol B(cj)(Q(bj)) to denote the set of edges in a 
fundamental circuit (cutset) as well as the corresponding binary vector. 

Proofs of the following dual results can be found in Ref. [28]. 

Theorem 1. (a) If a cut contains the branches {b1, b2, …, bj} then the 
corresponding cut vector can be represented as modulo 2 addition of the 
vectors Q(b1), Q(b2), …, Q(bj). That is, the cut vector is equal to Q(b1)⊕Q 
(b2)⊕ … ⊕Q(bj).  

(b) If a circuit contains the chords {c1, c2, …, cj} then the corresponding 
circuit vector can be represented as modulo 2 addition of the vectors B 
(c1), B(c2), …, B(cj). That is, the circuit vector is equal to B(c1)⊕B 
(c2)⊕ … ⊕B(cj). □ 

Theorem 2. (Orthogonality): A circuit and a cut have an even number of 
common edges. □ 

Theorem 3. Bft = Qt
fc, where Qt

fc is the transpose of Qfc. □ 
The above properties can be verified using the Bf and Qf matrices 

given in equations (1) and (2). 
An ordered sequence B(c1), B(c2), …, B(ck) is a circuit cover sequence 

or simply a B-sequence of length k if it is a maximal sequence satisfying 

a)
[

B
(
cj
)
− cj − ∪

j− 1

p=1
B
(
cp
)
]

∕= ∅, 2 ≤ j ≤ k

b) ∪
k

p=1
B
(
cp
)
= E − {chords ​ not ​ in ​ the ​ B − sequence}

Note that for a given spanning tree and its f-circuits, there may be 
more than one B-sequence. For example for the fundamental circuits 
given in (1), the following are B-sequences: 

(1) B(c1),B(c3),B(c5)

(2) B(c4),B(c1)

(3) B(c6),B(c1),B(c4)

Note that the order in which the B(cj)’s appear matters in the defi
nition of B-sequences. Without loss of generality we assume that B(c1), B 
(c2), …, B(ck) is a B-sequence of length k. Let us define S(cj) as follows: 

a) S(c1) = B(c1) − c1

b) S
(
cj
)
= B

(
cj
)
− cj − ∪

j− 1

p=1
B
(
cp
)
, 2 ≤ j ≤ k 

Then the submatrix of the f-circuits comprised of the rows corre
sponding to B(c1), B(c2), …, B(ck) will have the structure shown in (3). 
Note here that × means 0 or 1. 

Fig. 2. Concept of a tree and a cut.  
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An ordered sequence Q(b1), Q(b2), …, Q(bk) is a cutset cover sequence 
or simply a Q-sequence of length k if it is a maximal sequence satisfying 

a)
[

Q
(
bj
)
− bj − ∪

j− 1

p=1
Q
(
bp
)
]

∕= ∅, 2 ≤ j ≤ k

b) ∪
k

p=1
Q
(
bp
)
= E − {branches ​ not ​ in ​ the ​ Q − sequence}

Note that for a given spanning tree and its f-cutsets, there may be 
more than one Q-sequence. For example, for the fundamental cutsets 
given in (2), the following are Q-sequences: 

(1) Q(b4),Q(b5),Q(b3)

(2) Q(b4),Q(b5),Q(b1),Q(b2)

(3) Q(b1),Q(b2),Q(b4)

Without loss of generality, we assume that Q(b1), Q(b2), …, Q(bk) is a 
Q-sequence of length k. Let us define Ŝ(bj) as follows: 

a) Ŝ(b1) = Q(b1) − b1

b) Ŝ
(
bj
)
= Q

(
bj
)
− bj − ∪

j− 1

p=1
Q
(
bp
)
, 2 ≤ j ≤ k 

Then the submatrix of the f-cutsets comprised of the rows corre
sponding to Q(b1), Q(b2), …, Q(bk) has a structure similar to (3) as shown 
in (4). 

The following dual results are a consequence of the structures in (3) 
and (4). 

(3)  

(4)   

Theorem 4. (a) Given a B-sequence B(c1), B(c2), …, B(ck), let B(ci1 ),

B(ci2 ),…,B(ciℓ ) be a subsequence of this sequence then 
S(ciℓ )⫅B(ci1 )⨁B(ci2 )⨁…⨁B(ciℓ ).  

(b) Given a Q-sequence Q(b1), Q(b2), …, Q(bk), let Q(bi1 ),Q(bi2 ),…,

Q(biℓ ) be a subsequence of this sequence then 
Ŝ(biℓ )⫅Q(bi1 )⨁Q(bi2 )⨁…⨁Q(biℓ ). □ 

Deletion of an edge and contraction of an edge are dual operations. 
Here by contraction of an edge we refer to the operation of identifying 
the end vertices of the edge (short-circuiting the end vertices) and 
removing self loops that result from this short-circuiting. flushleft 

Given a B-sequence, the submatrix of the Bf matrix that results after 
removing the rows that do not correspond to the chords in the B- 
sequence is called a B-sequence matrix. For example the B-sequence 
matrix corresponding to the B-sequence B(c1), B(c3), B(c5) is shown in 
(5). 

(5) 

It can be shown that deletion of a row from Bf matrix corresponds to 
the deletion of the corresponding chord from the graph. 

Given a Q-sequence, the submatrix of the Qf matrix that results after 
removing the rows that do not correspond to the branches in the Q- 
sequence is called a Q-sequence matrix. For example the Q-sequence 
matrix corresponding to the Q-sequence Q(b4), Q(b5), Q(b2), Q(b1) is 
shown in (6). 

(6) 

It can be shown that deletion of a row from the Qf matrix corresponds 
to contraction of the corresponding branch from the graph. 

The following dual results are easy to verify. 

Theorem 5. a) The B-sequence matrix corresponding to a B-sequence is 
the fundamental circuit matrix of the graph that results after deleting the 
chords that do not appear in the B-sequence.  

b) The Q-sequence matrix corresponding to a Q-sequence is the fundamental 
cutset matrix of the graph that results after contracting the branches that 
do not appear in the Q-sequence. □ 

The incidence set of a vertex v in a graph is the set of vertices adjacent 
to that vertex. The incidence set of vertex v will be denoted by INC(v). 
Each incident set is a cut of the graph. It is known that any set of n − 1 
incidence sets can be used to generate any cut in a graph. The incident 
vector INC(v) of a vertex v is the binary vector of m entries with jth entry 
being 1, if the jth edge is in the corresponding incident set. The following 
result is a special case of Theorem 1(a). Note that we use INC(v) to 
denote both the incidence set and the corresponding binary vector. 
Incidence matrix of G is the matrix of incidence vectors of G. 

Theorem 6. The cut vector corresponding to the cut (S, S) can be obtained 
as the modulo 2 addition of the incident vectors of the vertices in S as well as 
the modulo 2 addition of the incidence vectors of the vertices in S. □ 

A sequence of INC(v1), INC(v2), …, INC(vk) is an incident cover 
sequence or simply an INC-sequence of length k if it is a maximal sequence 
satisfying 

a)
[

INC
(
cj
)
− ∪

j− 1

p=1
INC

(
vp
)
]

∕= ∅, 2 ≤ j ≤ k

b) ∪
k

p=1
INC

(
vp
)
= E 

Given an INC-sequence, the submatrix of the incidence matrix con
sisting of the rows corresponding to the vertices in the INC-sequence has 
a structure similar to the structure in (4). 

The following result will be used in the Proof of correctness of all 
algorithms developed in the following sections. 

Theorem 7. [28] A graph is connected if and only if every cut of the graph 
contains at least one edge. □ 

4. CIRCUIT-SMART: the primal algorithm for survivable logical 
topology routing 

Given a logical topology GL and a physical topology G of an optical 
network, the SMART algorithmic framework given in Ref. [2] provides a 
methodology for finding survivable mappings of the edges of GL into 
lightpaths in G. To begin with, let us call GL the current graph. 

Algorithm 1 
Algorithm SMART  

1: Search for a survivable subgraph of the current graph 
2: if no such subgraph is found then 
3: terminate SMART unsuccessfully 
4: else 
5: contract the edges of the subgraph 
6: end if 
7: if the current graph is a single vertex then 
8: terminate SMART successfully 
9: else 
10: return to step 1 and use the contracted graph as the current graph 
11: end if  

When Algorithm 1 terminates successfully, the edges mapped by 
SMART provide a survivable subgraph of GL. All the edges that were not 
mapped by SMART can be mapped arbitrarily without affecting the 
survivability of GL. It can be shown that the subgraph chosen in step 1 
above must be 2-edge connected for the correctness of the algorithm. 

K. Thulasiraman et al.                                                                                                                                                                                                                         
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Since a circuit is the smallest 2-edge connected graph, usually in step 1 a 
circuit is selected for survivable mapping. 

Now consider the graph GL in Fig. 3. If the circuits are selected in the 
sequence C1, C2, C3, C4 and {e6, e10, e12, e17, e16, e19, e20, e23, e3} then 
these are fundamental circuits of the tree for which {e1, e8, e21, e19, e15, 
e6} are chords. This observation is true for any choice of circuits selected 
and mapped by SMART. So our new algorithm CIRCUIT-SMART starts 
with a set of fundamental circuits and a B-sequence constructed from 
these circuits. Since our interest is to guarantee survivability we add to 
GL new edges in parallel to some of the edges in GL whenever necessary. 
The new edge added in parallel to edge e of GL will be denoted as e′. Both 
e and e′ will be mapped as disjoint lightpaths in G. These edges will be 
called protection edges. 

Algorithm 2 
Algorithm CIRCUIT-SMART  

Input: A 2-edge connected physical topology G, logical topology GL,a spanning 
tree T of GL, a set of fundamental circuits and B-sequence B(c1), B(c2), …, 
B(ck) 

Output: A survivable logical graph $G_{L}^{\prime}$ containing GL 
1: fori = 1, 2, …, k do 
2: Map a maximum subset of edges in S(ck)

⋃
ck into disjoint lightpaths in G 

[31] 
3: To all other edges in S(ck)

⋃
ck, add protection edges and map each edge 

and its protection edges into disjoint lightpaths in G 
4: end for 
5: Map all the chords not in the B-sequence into lightpaths in G arbitrarily  

Theorem 8. The graph G′

L of edges mapped by algorithm CIRCUIT- 
SMART forms a survivable logical graph. 

Proof. We prove that G′

L is survivable by showing that after failure of any 
edge in the physical topology each cut in G′

L satisfies the condition in Theo
rem 7. Consider a cut in G′

L. If any edge in this cut is a protection edge e′, then 
this edge and the corresponding edge e in G′

L are mapped by the algorithm into 
disjoint lightpaths. Hence, one of them will remain in the cut after a single 
physical edge failure, thereby satisfying the condition in Theorem 7. If there 
is no protection edge in the cut, then consider the branches in the cut. The cut 
must contain at least one branch of T because chords alone cannot form a cut. 
Note that each branch is in a unique S(ci). Let chord cj be the chord with the 
smallest index in the B-sequence such that S(cj) contains one of the branches, 
say branch bi, in the selected cut. If S(cj) contains two or more branches in the 
cut, then these branches are mapped by the algorithm into disjoint paths and 
so the cut will satisfy the condition of Theorem 7 after a single link failure. If 
S(ci) contains only one branch of the selected cut, say bi, the cut must contain 
chord ci because the cut and B(ci) must contain an even number of edges in 
common (Theorem 2). Since bi and ci are mapped by the algorithm into 

disjoint paths in the physical topology, one of these two edges will remain in 
the cut after a single edge failure, satisfying again the condition of Theorem 
7. Thus in all cases, the cut will satisfy the condition of Theorem 7 and so the 
graph G′

L and the routing generated by CIRCUIT-SMART are survivable. □ 
The essential difference between SMART and CIRCUIT-SMART is 

that instead of searching for a survivable circuit in each step (as in 
SMART), CIRCUIT-SMART uses a set of fundamental circuits. Since not 
all edges in a S(ci) set may be mapped in a disjoint manner, we add 
protection edges appropriately. The longer the B-sequence, the more are 
the number of chords in the survivable logical subgraph. On the other 
hand, a smaller B-sequence may increase the sizes of S(ci)-sets and hence 
may result in more number of protection edges. These are considerations 
that must be taken into account while selecting the spanning tree. 

5. CUTSET-SMART: the dual algorithm 

We now present algorithm CUTSET-SMART (Algorithm 3) that is the 
dual of algorithm CIRCUIT-SMART. In the following a branch is un
matched if it is not in the given Q-sequence. 

Algorithm 3 
Algorithm CUTSET-SMART  

Input: A 2-edge connected physical topology G, logical topology GL a spanning 
tree T of GL, a set of fundamental cutsets and a Q-sequence Q(b1), Q(b2), 
…, Q(bk) 

Output: A survivable logical $G_{L}^{\dprime}$ containing GL 
1: fori = 1, 2, …, k do 
2: Map a maximum subset of edges in $\hat{S}(b_{k})\bigcup b_{k}$ into 

disjoint lightpaths in G [31] 
3: To all other edges in $\hat{S}(b_{k})\bigcup b_{k}$, add protection 

edges and map each edge and its protection edge into disjoint lightpaths 
in G 

4: end for 
5: To each unmatched branch b, add a protection edge b′ and map them into 

disjoint lightpaths in G  

Let G′′
L be the graph of logical edges (including protection edges) 

mapped by CUTSET-SMART. 

Theorem 9. a) The graph G′′
L and the mappings generated by CUTSET- 

SMART are survivable.  

b) The graph obtained from G′′
L by contracting the branches not in the Q- 

sequence is survivable 

Proof. a) Consider a cut in G′′
L. If any edge in this cut is a protection edge, 

then this edge and the corresponding edge in GL are mapped by 
the algorithm CUTSET-SMART into disjoint lightpaths. Hence 
one of them will remain in the cut after a single physical edge 
failure, thereby satisfying the condition in Theorem 7. If there is 
no protection edge in the cut, then consider the branch bj in the 
cut that has the highest index in the Q-sequence. Then by The
orem 4(b), the set Ŝ(bj) will be in the cut. Since the branch bj 

and the edges in the set Ŝ(bj) are mapped in disjoint manner by 
the algorithm, the cut will contain at least one edge after a 
physical edge failure, thereby satisfying the condition of Theo
rem 7. Thus G′′

L is survivable.  

b) The graph obtained from G′′
L by contracting the branches not in the Q- 

sequence has no cut that contains the contracted tree branches and the 
corresponding protection edges. The result follows from the Proof of (a). 
□ 

Note that Theorem 9(b) is the dual of the result that graph G′

L 
generated by CIRCUIT-SMART is survivable. 

A closer look at the above Proof will show that in steps 1–3 of 
Fig. 3. Illustration of the SMART algorithm.  
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CUTSET-SMART, it is sufficient to map in disjoint manner each branch bi 

with some chord in the set Ŝ(bi). This results in algorithm CUTSET- 
SMART-SIMPLIFIED shown in algorithm 4. This algorithm requires 
finding disjoint mappings for only certain pairs of vertices in the phys
ical topology. 

Algorithm 4 
Algorithm CUTSET-SMART-SIMPLIFIED  

Input: A 2-edge connected physical topology G, logical topology GL, a spanning 
tree T of GL, a set of fundamental cutsets and a Q-sequence Q(b1), Q(b2), 
…, Q(bk) 

Output: A survivable logical graph $G_{L}^{\dprime}$ containing GL 
1: for i = 1, 2, …, k do 
2: Map bi in disjoint manner with some chord in set $\hat{S}(b_{i})$ [31] 
3: if this is not possible for any chord in $\hat{S}(b_{i})$ then 
4: Add a protection edge for one of the chords and map the chord and its 

protection edge in disjoint manner 
5: end if 
6: end for 
7: To each unmatched branch b, add a protection edge b′ and map them as 

disjoint lightpaths in G 
8: Map all the unmapped logical edges arbitrarily  

Using a result in Ref. [31] we have the following Theorem. 

Theorem 10. Given any Q-sequence of length k, algorithm CUTSET- 
SMART-SIMPLIFIED finds a survivable mapping of a logical topology with 
at most n − k − 1 protection edges, if the physical topology is 3-edge con
nected. □ 

The main reason for the above result is that any pair of edges {(s1, t1), 
(s2, t2)} in GL can be mapped into disjoint lightpaths, if the physical 
topology is 3-edge connected. This means that protection edges will be 
needed only for the branches not in the Q-sequence. 

The Proof of the Theorem 9 shows that every cut obtained from G′′
L by 

contracting the branches not in the Q-sequence will contain at least 
min{|Ŝ(bi)|+1, i= 1,2,…, k} edges after a single edge failure in the 
physical topology. This property of CUTSET-SMART will be of great help 
in protecting the logical topology when multiple edge failures occur in 
the physical topology. This property is not true in the case of algorithm 
CUTSET-SMART-SIMPLIFIED though it is computationally superior to 
CUTSET-SMART and is likely to require less number of protection edges. 
An interesting consequence of algorithm CUTSET-SMART-SIMPLIFIED is 
the following. 

Theorem 11. The structure shown in Fig. 4 is survivable, if the physical 
topology is 3-edge connected. □ 

This Theorem is a consequence of the following: given any three 
vertices x, y, and z in a 3-edge connected graph G, there exist edge- 
disjoint paths Pxy, Pyz, Pxz. This means that we can map bn− 2, bn− 1, and 
cn− 2 in disjoint manner. flushleft 

An interesting application of this result is as follows. Note that pro
tection edges are used in the algorithms of Sections 4 and 5 to guarantee 
survivability. Consider a set of edges that form a path and require pro
tection edges, then it can be shown that we can augment the logical 
topology by adding new logical edges c1, c2, …as in Fig. 4, instead of 
protection edges (that is, new parallel logical edges) and guarantee 
survivability. This is the topic of augmentation studied in Refs. [22,23]. 

Note that we have not been able to prove a property similar to the 
one in Theorem 10 in the case of CIRCUIT-SMART. Nor has it been 
possible for us to find a simplified version of CIRCUIT-SMART akin to 

CUTSET-SMART-SIMPLIFIED. 

6. INCIDENCE-SMART 

Incident sets are special cases of cuts. So an algorithm similar to 
CUTSET-SMART can be designed. Instead of explicitly starting with a 
spanning tree of GL, we present an algorithm which reflects the unified 
framework in terms of INC-sets defined in Section 3. Note that for any 
INC-sequence there is at least one vertex that is not in the sequence. Let 
us call one such vertex as datum. 

In the following algorithm (Algorithm 5) the given GL will be the 
initial current graph. 

Algorithm 5 
Algorithm INCIDENCE-SMART  

Input: A 2-edge connected physical topology G, a logical topology GL, INC- 
sequence INC(v1), INC(v2), …, INC(vk) 

Output: A survivable logical graph $G_{L}^{\dprime}$ containing GL 
1: fori = 1, 2, …, k do 
2: if vertex vi has degree greater than or equal to 2 in the current graph 
3: Map all the edges incident on vi into disjoint lightpaths in G and 

remove vi from the current logical graph 
4: end if 
5: if the degree of vi in the current graph is one then 
6: Add a new logical edge connecting vi to the datum vertex 
7: Map this new edge and the only edge incident on vi into disjoint 

lightpaths and vi from the logical graph 
8: end if 
9: if degree of vi in the current graph is zero then 
10: Add two new parallel logical edges connecting vi to the datum vertex. 

Then map these two edges into disjoint lightpaths in G and remove vi from 
the current logical graph 

11: end if 
12: end if  

Theorem 12. Algorithm INCIDENCE-SMART provides a survivable 
mapping of the edges of a graph G′′

L (output of algorithm INCIDENCE- 
SMART) that contains the given logical graph GL. 

Proof. Consider any cut (S, S) in GL. Let S be the partition of the cut that 
does not contain the datum vertex. Consider the vertex v in S that has the 
highest index in the INC-sequence. Then in the current graph at the step when 
v is considered by the algorithm it will not be adjacent to any vertex in S. So, 
according to the algorithm v will be connected to at least two vertices in S, and 
the corresponding edges connecting S and S are mapped into disjoint light
paths, guaranteeing that at least one of these edges will remain in the cut after 
a single edge failure in G and satisfying the condition of Theorem 7. Since this 
is true for all cuts, the mappings generated by the algorithm are survivable. □ 

We now draw attention to a shortcoming of the algorithmic frame
work CUTSET-SMART. Algorithm CIRCUIT-SMART would not require 
any additional edges to be added to the logical graph if no new edges 
(protection edges) are added in steps 1–3 of this algorithm. This is not 
the case with algorithm CUTSET-SMART. This algorithm requires pro
tection edges to be added to all unmapped branches. So, CIRCUIT- 
SMART guarantees a survivable mapping of the given logical graph, if 
steps 1–3 do not require any new edges to be added. On the other hand, 
CUTSET-SMART guarantees a survivable mapping of the graph obtained 
by contracting the unmapped branches in the logical graph (Theorem 9 
(b)), if steps 1–3 of this algorithm do not require any new edges to be 
added. 

The question now arises if it is possible to obtain a generalized 
version of CUTSET-SMART that does not have this limitation. Next we 
address this question and provide an affirmative answer. 

Fig. 4. A survivable network structure.  
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7. Generalized circuit/cutset cover sequences 

An ordered sequence B(c1), B(c2), …, B(ck) is a generalized circuit 
cover sequence.  

1. if this sequence is a circuit cover sequence, and  
2. for every unmapped chord ci, B(ci)

⋂
S(cj) = S(cj), where j is the largest 

index such that B(ci)
⋂

S(cj) ∕= ∅. In this case, we say that the un
mapped chord ci is covered by the chord cj. We also say that chord cj 
covers itself. 

An ordered sequence Q(b1), Q(b2), …, Q(bk) is a generalized cutset 
cover sequence.  

1. if this sequence is a cutset cover sequence, and  
2. for every unmapped branch bi, Q(bi)

⋂
Ŝ(bj) = Ŝ(bj), where j is the 

largest index such that Q(bi)
⋂

Ŝ(bj) ∕= ∅. In this case we say that the 
unmapped branch bi is covered by the branch bj. We also say that 
branch bj covers itself. 

Given a generalized circuit cover sequence B(c1), B(c2), …, B(ck). We 
define the set B − Cover(ci), for each i = 1, 2, …, k as the set of all chords 
(including itself) covered by the chord ci. The B-cover sets define a 
partition of the chords with respect to the given spanning tree. If we 
arrange the rows of the f-circuit matrix with respect to the spanning tree 
to correspond to the sets B − Cover(c1), B − Cover(c2), …, B − Cover(ck) 
in that order and arrange the columns to correspond to the sets B − Cover 
(c1), B − Cover(c2), …, B − Cover(ck), S(c1), S(c2), …, S(ck) then the f- 
circuit matrix will have the form shown in (7). In (7), I stands for a 
matrix of all 1’s, 0 is a matrix of 0’s and U refers to the unit matrix of 
appropriate size. Also, B(ci) stands for B − Cover(ci). 

(7) 

Similarly, given a generalized cutset cover sequence Q(b1), Q(b2), …, 
Q(bk), we define the set Q − Cover(bi) for each i = 1, 2, …, k as the set of 
all branches (including itself) covered by the branch bi. The Q-cover sets 
define a partition of the branches of the given spanning tree. If we 
arrange the rows of the f-cutset matrix to correspond to the sets Q −
Cover(b1), Q − Cover(b2), …, Q − Cover(bk) in that order and arrange the 
columns to correspond to the sets Q − Cover(b1),Q − Cover(b2),…,Q −

Cover(bk), Ŝ(b1), Ŝ(b2), …, Ŝ(bk), then the f-cutset matrix will have the 
form shown in (8). In (8), I stands for a matrix of all 1’s, 0 is a matrix of 
0’s and U refers to the unit matrix of appropriate size. Also Q(bi) stands 
for Q − Cover(bi). 

(8)  

8. Generalized circuit/cutset cover sequence algorithm 

Given a cutset cover sequence Q(b1), Q(b2), …, Q(bk) of length k with 
respect to a spanning tree of a graph. We now present an algorithm GEN- 
CUTSET-COVER to construct a generalized cutset cover sequence. We 
use a vector of size n, GEN_CUTSET_SEQ, to denote the current cutset 
cover sequence so that initially. 

Algorithm 6 
Algorithm GEN-CUTSET-COVER  

1: Pick a branch bx ∈UNMAP 
2: Remove bx from UNMAP 
3: Let j be the largest index such that GEN_CUTSET_SEQ(j) = by and $Q(b_{x}) 

\bigcap \hat{S}(b_{y} )\neq \emptyset$ 
4: if $Q (b_{x})\bigcap\hat{S}(b_{y})\neq \hat{S}(b_{y})$ then 
5: GEN_CUTSET_SEQ(j) ← bx 
6: GEN_CUTSET_SEQ(r) ← GEN_CUTSET_SEQ(r − 1), j + 1 ≤ r ≤ n − 1, 
7: $\hat{S}(b_{x})\leftarrow Q(b_{x})\bigcap \hat{S}(b_{y})$, 
8: $\hat{S}(b_{y})\leftarrow \hat{S}(b_{y}) - \hat{S}(b_{x})$ 
9: Q − Cover(bx) ←{bx} 
10: Note: The GEN_CUTSET_SEQ has been modified as [b1, b2, …, bj− 1, bx, bj, …, 

bk, 0, 0, …, 0] 
11: end if 
12: Add bx to Q − Cover(by) 
13: Repeat above steps until UNMAP is empty  

GEN_CUTSET_SEQ(i) = bi, 1 ≤ i ≤ k, and. 
GEN_CUTSET_SEQ(i) = 0, k + 1 ≤ i ≤ n − 1. 
The set UNMAP will denote the set of branches that are not in the 

cutset cover sequence. So, initially UNMAP = {bk+1, bk+2, …, bn− 1}. As 
before, Q − Cover(bi) will denote the set of all branches covered by 
branch bi. So initially, Q − Cover(bi) = bi. 

We first give an informal description of the algorithm GEN_
CUTSET_COVER. At a general step, the algorithm picks an unmapped 
branch bx. Let j be the largest index such that GEN_CUTSET_SEQ(j) = by 

and Q(bx)
⋂

Ŝ(by) ∕= ∅.  

• If Q(bx)
⋂

ŝ(by) ∕= Ŝ(by), then the algorithm inserts bx as the jth 
element in GEN_CUTSET_SEQ and increments the positions of all 
subsequent elements by one. The algorithm also sets Ŝ(bx) to 
Q(bx)

⋂
Ŝ(by). For example, if the current cutset cover sequence is b1, 

b2, …, bj− 1, by, bj+1, …, bk then the new sequence is b1, b2, …, bj− 1, bx, 
by, bj+1, …, bk.  

• Otherwise, that is, if Q(bx)
⋂

Ŝ(by) = Ŝ(by), then the algorithm adds 
bx to Q − Cover(by).  

Theorem 13. The cutset cover sequence at the termination of Algorithm 
GEN_CUTSET_COVER is a generalized cutset cover sequence. 

Proof. The algorithm begins with a cutset cover sequence. Steps 1–11 in the 
algorithm guarantee that the sequence continues to be a cutset cover sequence 
throughout the execution of the algorithm. Also, every mapped branch is in its 
own Q-Cover set. So we only need to show that an unmapped branch, once it 
becomes a member of some Q − Cover(bi), does not leave Q − Cover(bi). 
Suppose that bx is added to Q − Cover(by) (because of step 12 in the algo
rithm). At this point Q(bx)

⋂
Ŝ(by) = Ŝ(by) and j is the largest index such that 

GEN_CUTSET_SEQ(j) = by. At the end of every step in the algorithm, by re
mains in position j or in a higher position. This guarantees that by continues to 
be in the highest position in GEN_CUTSET_SEQ such that the intersection of 
corresponding Ŝ(by) with Q(bx) is Ŝ(by). So bx continues to be in Q − Cover 
(by). Thus, at the end of the algorithm, every branch is in some Q − Cover(bi) 
and no branch is in more than one Q − Cover(bi) set guaranteeing that the 
algorithm produces a generalized cutset cover sequence. □ 
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9. Algorithm GEN-CUTSET-SMART 

Given a spanning tree of a logical graph, we now present a gener
alized version of CUTSET-SMART that does not require addition of 
protection edges to the unmapped branches. This algorithm does not 
have step 5 of CUTSET-SMART (Algorithm 3) and has a modified version 
of steps 1–4 of CUTSET-SMART. 

Algorithm 7 
Algorithm GEN-CUTSET-SMART  

1: Starting with any cutset cover sequence, generate a generalized cutset cover 
sequence using algorithm GEN-CUTSET-COVER. Let this sequence be Q(b1), Q(b2), 
…, Q(bk) 

2: for each bi, i = 1, 2, …, k do 
3: Map a maximum subset of edges in Q − Cover(bi)

⋃
Ŝ(bi) into disjoint lightpaths in 

G.  
4: To all other edges in Q − Cover(bi)

⋃
Ŝ(bi), add protection edges and map each 

edge and its protection edge into disjoint lightpaths in G [31].  
5: end for  

We now prove the correctness of algorithm GEN-CUTSET-SMART. In 
Theorem 14, G′

L refers to the original logical topology GL augmented 
with protection edges added as in steps 2–5 of algorithm GEN-CUTSET- 
SMART. 

Theorem 14. The graph G′

L with the mappings generated by algorithm 
GEN-CUTSET-SMART is survivable. 

Proof. Consider a cut in G′

L. If this cut has a protection edge, then this edge 
and the corresponding edge in GL are mapped by the algorithm into disjoint 
lightpaths in the physical topology. Hence one of them will remain in the cut 
after a single physical edge failure, thereby satisfying the condition in The
orem 7. 

If there is no protection edge in the cut, then consider the branch bi in the 
cut that has the highest index in the generalized cutset cover sequence. If this 
cut has a branch bk ∈ Q − Cover(bi) with i ∕= k, then both bi and bk are 
mapped by the algorithm into edge-disjoint paths in the physical topology. 
Hence one of them will remain in the cut after a single physical edge failure, 
thereby satisfying the condition of Theorem 7. 

If the cut has no branch bk ∈ Q − Cover(bi) with i ∕= k, then by Theorem 4 
(b) the set Ŝ(bj) will be in the cut. Since the branch bj and the edges in the set 
Ŝ(bj) are mapped into disjoint manner by the algorithm, the cut will contain 
at least one edge after a physical edge failure, thereby satisfying the condition 
of Theorem 7. 

Thus in all cases, the algorithm generates a survivable mapping of the 
graph G′

L. □ 

A generalized version of CUTSET-SMART-SIMPLIFIED starting from 
GEN-CUTSET-SMART can be designed and is given in algorithm 8. Al
gorithm CIRCUIT-SMART will remain the same whether we use a circuit 
cover sequence or a generalized circuit cover sequence. GEN-CIRCUIT- 
SMART will refer to CIRCUIT-SMART that uses a generalized circuit 
cover sequence. 

Algorithm 8 
Algorithm GEN-CUTSET-SMART-SIMPLIFIED  

1: Starting with any cutset cover sequence, generate a generalized cutset cover 
sequence using algorithm GEN-CUTSET-COVER(Algorithm 6). Let this sequence be 
Q(b1), Q(b2), …, Q(bk). 

2: for each bi, i = 1, 2, …, k do 
3: Pick a chord cr in set Ŝ(bi). Map a maximum subset of edges in Q − Cover(bi)

⋃
cr 

into edge disjoint lightpaths in G [31]  
4: To all other edges in Q − Cover(bi)

⋃
cr, add protection edges and map each edge 

and its protection edge into disjoint lightpaths in G 
5: end for  

10. Primal Meets Dual 

In this section we first show an interesting relationship between 
generalized circuit and generalized cutset cover sequences, using the 
relationship given in Theorem 3. Using this result we then show that the 
distinction between the primal method (based on circuits) and the dual 
method (based on cutsets) disappears if these methods are based on 
generalized circuit and cutset cover sequences. 

Let Qf denote the fundamental cutset matrix with respect to a given 
generalized cutset cover sequence Q(b1), Q(b2), …, Q(bk). Recall that Q 
− Cover(bi) refers to the set of branches covered by the branch bi in the 
cover sequence. Note that all branches in Q − Cover(bi) except bi are 
unmapped branches (that is, those branches that are not in the given 
cover sequence). If we arrange the rows of the f-cutset matrix Qf to 
correspond to the sets Q − Cover(b1), Q − Cover(b2), …, Q − Cover(bk) in 
that order and arrange the columns to correspond to the sets Q −

Cover(b1),Q − Cover(b2),…,Q − Cover(bk), Ŝ(b1), Ŝ(b2),…, Ŝ(bk), then the 
submatrix Qt

fc of Qf whose columns are arranged in the order Ŝ(b1), Ŝ(b2),

…, Ŝ(bk), will have the form shown in (9) (see also equation (8)). 
Note that for each br in the given generalized cutset cover sequence, 

the rows of the matrix I in the columns corresponding to Ŝ(br) corre
spond to the branches in Q − Cover(br). 

Consider now the fundamental circuit matrix Bf. Then the submatrix 
Bft with its columns arranged to correspond to the sets Q − Cover(bk), Q 
− Cover(bk− 1), …, Q − Cover(b1) in that order and the rows arranged to 
correspond to the sets Ŝ(bk), Ŝ(bk− 1),…, Ŝ(b1), then in view of the rela
tionship Bft = Qt

fc, in Theorem 3, the matrix Bft will have exactly the 
same structure as in (10) (see also equation (7)), where for the sake of 
convenience, Q̂(bi) stands for Q − Cover(bi). This leads to Theorem 15. 

(9)  

(10)  

Theorem 15. Given a generalized cutset cover sequence Q(b1), Q(b2), …, 
Q(bk), let chords c1, c2, …, ck be selected such that each ci ∈ Ŝ(bj), where j =
k − i + 1. Then the sequence B(c1), B(c2), …, B(ck) is a generalized circuit 
cover sequence with  

● B − Cover(ci) = Ŝ(bk− i+1); and  

● S(ci) = Q − Cover(bk− i+1). 

Starting from a generalized circuit cover sequence one can also get a 
generalized cutset cover sequence and a result dual to Theorem 15 is 
stated in Theorem 16. 

Theorem 16. Given a generalized circuit cover B(c1), B(c2), …, B(ck), let 
branches b1, b2, …, bk be selected such that each bi ∈ S(ck− i+1). Then  

● The sequence Q(b1), Q(b2), …, Q(bk) is a generalized cutset cover 
sequence;  

● Q − Cover(bi) = S(ck− i+1); and  
● Ŝ(bi) = B − Cover(ck− i+1). 

In view of Theorems 15 and 16, we get the following. 

Theorem 17. (Primal Meets Dual): If a generalized circuit cover sequence 
or the corresponding generalized cutset cover sequence is used, then the set of 
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edges picked (for disjoint mappings) in each execution of steps 1–4 by al
gorithm CIRCUIT-SMART corresponds to the set of edges picked (for disjoint 
mappings) in an execution of steps 1–5 of algorithm GEN-CUTSET-SMART- 
SIMPLIFIED. 

As an example, consider the Bf matrix in (1). It can be verified that B 
(c2), B(c6), B(c3), B(c4) is a generalized circuit cover sequence with. 

B − Cover(c2) = {c2}, S(c2) = {b1, b2} 
B − Cover(c6) = {c6, c1}, S(c6) = {b3} 
B − Cover(c3) = {c3}, S(c3) = {b4} 
B − Cover(c4) = {c4, c5}, S(c4) = {b5} 
Picking the branches selected as in Theorem 16, we can get the 

following generalized cutset cover sequence Q(b5), Q(b4), Q(b3), Q(b2) 
with. 

Q − Cover(b5) = {b5}, Ŝ(b5) = {c4, c5}

Q − Cover(b4) = {b4}, Ŝ(b4) = {c3}

Q − Cover(b3) = {b3}, Ŝ(b3) = {c1, c6}

Q − Cover(b2) = {b1,b2}, Ŝ(b2) = {c2}

An execution of algorithm CIRCUIT-SMART will require the disjoint 
mappings of the following sets: 

{c2, b1, b2}, {c6, b3}, {c3, b4}, {c4, b5}. 
If we apply algorithm GEN-CUTSET-SMART-SIMPLIFIED by choosing 

c4 from Ŝ(b5) and c6 from Ŝ(b3) then we will select the above sets of 
edges for disjoint mappings as stated in Theorem 17. 

In view of Theorem 17, algorithm GEN-CUTSET-SMART-SIMPLIFIED 
may be viewed as a primal (circuit based) or dual (cutset based) algo
rithm. It can also be viewed as a primal-dual algorithm if we replace 
steps 1–5 of GEN-CUTSET-SMART-SIMPLIFIED by the following:  

(a) Dual Step (Cutset based): if Q − Cover(bi) has exactly one branch, 
namely, itself, then pick any chord ci in Ŝ(bi) and map cj and bi 
into disjoint lightpaths in the physical topology.  

(b) Primal Step (Circuit based): if Q − cover(bi) has more than one 
branch, then pick any chord cj in Ŝ(bi), and map cj and all the 
branches in Q − Cover(bi) into disjoint light paths in the physical 
topology. 

We call step (a) above as dual step since it is the same as step 1–5 in 
GEN-CUTSET-SMART-SIMPLIFIED. Step (b) is called the primal step 
because in view of Theorem 3 it is the same as steps 1–4 in CIRCUIT- 
SMART with respect to the chord ci. 

11. GEN-SMART: A generalized algorithmic framework for the 
SLTM problem 

In this section we present GEN-SMART (Algorithm 9), an algorithmic 
framework for the survivable logical topology mapping (SLTM) prob
lem. This framework includes as special cases the other SMART-based 
algorithms discussed in previous sections. 

Algorithm 9 
Algorithm GEN-SMART  

1: Starting with any cutset cover sequence, generate a generalized cutset cover 
sequence of GL. Let this sequence be Q(b1), Q(b2), …, Q(bk) 

2: for each i = 1, 2, …, k do 
3: Let A⫅Ŝ(bi) and B ⫅ Q − Cover(bi)  
4: Map the edges in the set bi

⋃
A
⋃

B into disjoint lightpaths in G 
5: end for  

For the sake of simplicity in presentation we ave assumed in the 
description of GEN-SMART that all the edges in the set A⫅Ŝ(bi) and B ⫅ 
Q − Cover(bi) can be mapped into disjoint paths in G. But this may not 
always be possible. In such cases, we map a maximum subset of these 
edges into disjoint paths. To the other edges in this set, we add 

protection edges and map each edge and its protection edge into disjoint 
paths in G. Also, if we choose A = Ŝ(bi) and B = Q − Cover(bi) then GEN- 
SMART becomes the same as GEN-CUTSET-SMART. Also, different 
choices of A and B in GEN-SMART lead to different versions of SMART- 
based algorithms discussed in the previous sections (see Table 1). 

Some observations on the different versions of GEN-SMART are now 
in order.  

• GEN-CUTSET-SIMPLIFIED and CUTSET-SMART do not guarantee 
survivability even against a single physical link failure unless pro
tection edges are added to the unmapped branches (those branches 
not in B).  

• CIRCUIT-SMART and GEN-CUTSET-SMART guarantee survivability 
against a single physical link failure. Moreover, CIRCUIT-SMART 
allows unmapped chords (those chords not in A) to be mapped 
arbitrarily. Both these algorithms have higher potential to provide 
survivability against multiple physical link failures because in both 
these algorithms all the edges in Ŝ(bi) are mapped disjointly. 

In the next section we provide an analytical evaluation of the extent 
to which these algorithms provide survivability against multiple 
failures. 

12. Robustness of survivable logical topology mapping 
algorithms 

In this section we first define the concept of robustness of an algo
rithm that is a measure of the ability to provide survivability against 
multiple physical failures. 

Given a logical topology GL and a physical topology G, the robustness 
β(A, r) of a logical topology mapping algorithm A with respect to G and 
GL is defined as the ratio of the number of cuts of GL that are guaranteed 
to be protected by algorithm A against r physical link failures to the total 
number of cuts in GL. 

We now proceed to evaluate β(A, r) for different algorithms. In the 
following A1, A2, A3 and A4 denote algorithms CUTSET-SMART- 
SIMPLIFIED, CUTSET-SMART, CIRCUIT-SMART and GEN-CUTSET- 
SMART, respectively. 

Table 1 
Special cases of GEN-SMART algorithms.  

Choice of A and B Special case of GEN-SMART 

|A| = 1, |B| = 1 GEN-CUTSET-SMART-SIMPLIFIED 
|A| = Ŝ(bi), |B| = 1  CUTSET-SMART 

|A| = 1, |B| = Q − Cover(bi) CIRCUIT-SMART 
|A| = Ŝ(bi), |B| = Q − Cover(bi) GEN-CUTSET-SMART  

Fig. 5. A cut S.  
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Given a generalized cutset cover sequence Q(b1), Q(b2), …, Q(bk). Let 
us first partition all cuts in GL into the sets Q1, Q2, …, Qk where Qi is the 
set of all cuts that contain at least one branch from the set Q − Cover(bi) 
and no branch from any set Q − Cover(bj), j > i. Note that this partition is 
well defined since every cut must have at least one branch. 

Consider now a cut S ∈ Qi. Assume that S contains p branches from Qi. 
In view of Theorem 1(a), the cut S will have the form in Fig. 5 if S has 

an odd number p of branches from the set Q − Cover(bi). Note that if p is 
even then none of the chords in Ŝ(bi) will be in S. Then, the number of 
edges mapped disjointly by the different Algorithms A1, A2, A3, A4 are:  

• Algorithm A1 maps edges bi and a chord c in Ŝ(bi) disjointly, if S 
contains bi.  

• Algorithm A2 maps bi and all edges in Ŝ(bi) disjointly, if S contains bi.  
• Algorithm A3 maps all the p branches and a chord c in Ŝ(bi).  
• Algorithm A4 maps all the p branches and all the chords in Ŝ(bi). 

Thus we have the following:  

• Algorithm A1 protects S against one physical link failure, if S contains 
bi.  

• Algorithm A2 protects S against at least |Ŝ(bi)| physical link failures, 
if S contains bi.  

• Algorithm A3 protects S against at least p physical link failures.  
• Algorithm A4 protects S against at least p + |Ŝ(bi)| − 1 physical link 

failures. 

Since p ≥ 1, we can restate the last statement as:  

• Algorithm A4 protects S against at least |Ŝ(bi)| physical link failures. 

Let hi = |Q − Cover(bi)|, gi = |Ŝ(bi)|. 
h = min |hi| and g = min |gi|. 
Also, let Ni = h1 + h2 + ⋯ + hi. 

12.1. Robustness of algorithm A1 

Algorithm A1 will protect against a single physical failure all cuts 
from each Qi that has an odd number of branches from the set Q − Cover 
(bi) and contains branch bi. This number is equal to. 

= (Number of combinations of branches from the sets Q − Cover(bk), 
k = 1, 2, …, i − 1) × (Number of combinations of odd number of 
branches from the set Q − Cover(bi) that contains bi). 

= 2Ni− 1 × 2hi− 2 

= 2Ni/4. 
Since the number of cuts in GL is 2n− 1 − 1, where n is the number of 

nodes in GL, and n − 1 = h1 + h2 + ⋯ + hk, we get 

β(A1, 1) ≥ 1

/

4

(
∑k

i=1
2Ni

)/
(
2n− 1 − 1

)
(11) 

Note that if p ≥ 2, β(A, p) ≥ 0, since there is no guarantee that al
gorithm A1 will protect any cut if 2 or more physical failures occur. 

12.2. Robustness of algorithm A2 

Algorithm A2 will protect against gi physical failures all cuts from 
each Qi that have an odd number of branches from the set Q − Cover(bi) 
and contain branch bi. This follows from the fact that each such cut will 
have bi and all edges in Ŝ(bi) that are mapped disjointly. 

So, 

β(A2, gi) ≥ 1

/

4

(
∑k

i=1
2Ni

)/
(
2n− 1 − 1

)
(12)  

12.3. Robustness of algorithm A3 

Algorithm A3 will protect against at least p physical failures all cuts 
from each Qi that has an odd number p of branches from the set Q −
Cover(bi). This follows from the fact that each such cut will have p 
branches and at least one chord c in Ŝ(bi) that are mapped disjointly. 

This number is equal to 

β(A3, p) ≥

(
∑k

i=1
2Ni− 1

∑hi

odd ​ q≥p
C(hi, q)

)/
(
2n− 1 − 1

)
, ​ for ​ odd ​ p ≥ 1

(13) 

where C(hi, q) is the number of q-combinations of hi elements. 

12.4. Robustness of algorithm A4 

Algorithm A4 will protect against at least |Ŝ(bi)| physical failures all 
cuts from each Qi that have an odd number of branches from the set Q −
Cover(bi). This follows from the fact that each such cut will have at least 
one branch and all the chords in Ŝ(bi) that are mapped disjointly. 

This number is equal to (Number of combinations of branches from 
the sets Q − Cover(bk), k = 1, 2,…, i − 1) × (Number of combinations of 
p branches from the set Q − Cover(bi))

= 2Ni− 1 × 2hi − 1

= 2Ni
/

2 

So, 

β(A, p) ≥ 1

/

2

(
∑k

i=1
2Ni

)/
(
2n− 1 − 1

)
(14) 

Let SUM = (
∑k

i=12Ni )/(2n− 1 − 1). Then, we can write the robustness 
of algorithms A1, A2, A4 as in the following Theorem. 

Theorem 18.  

β(A1, 1) ≥ 1/4SUM
β(A2, g) ≥ 1/4SUM
β(A4, g) ≥ 1/2SUM.

The value of SUM depends on the choice of generalized cutset cover 
sequence selected. Note that SUM is at most 2. flushleft 

Let SUM =
(∑k

i=12Ni

)
/(2n− 1 − 1). 

Then we can rewrite (11), (12), (14) as 

β(A1, 1) ≥ 1/4 SUM (15)  

β(A2, g) ≥ 1/4 SUM (16)  

β(A4, g) ≥ 1/2 SUM (17) 

Depending on the length of the generalized cutset cover sequence, 
the sizes of hi’s and gi’s, the location of physical link failures and the 
mappings used, the number of protected cuts could be much larger. The 
higher the value of β(A, r) the higher will be the probability that algo
rithm A will protect GL from any set of r physical link failures. 

13. Summary, comparative evaluation and applications beyond 
IP-over-WDM optical networks 

In this section we present extensive simulation results comparing the 
different algorithms developed in this paper. The comparisons are in 
terms of three metrics: execution time, number of protection edges 
added, and robustness (that is, the ability to provide survivability 
against multiple failures). We also point to applications of our work in 
areas beyond IP-over-WDM optical networks, in particular, design of 
survivable multi-layer interdependent networks. 
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13.1. Execution time and number of protection edges added 

To compare the performance of the CIRCUIT-SMART, CUTSET- 
SMART-SIMPLIFIED and GEN-CUTSET-SMART-SIMPLIFIED simulation 
studies were conducted using VC++ 8.0. For simulation studies, random 
logical topologies with varying number of nodes and degrees were 
generated. The physical topologies were regular topologies with degree 
4, constructed using a procedure originally given by Harary and 
described in Ref. [30]. The number of nodes in the physical topologies 
was set to 50, 100, and 200 nodes (|N|). The logical topologies were 
generated randomly with average degrees 2.5, 3.0, 3.5 and 4.0. The 
nodes in the logical topologies were a subset of the physical nodes and 
number of logical nodes in the logical topology was set to 0.75 × |N|. For 
each case, 10 physical and 10 logical topologies were generated, 
providing a total of 100 logical-physical topology pairs for comparison. 
The topologies were subjected to further processing, only if the topol
ogies met the connectivity requirements. 

To find the maximum number of logical links that could be mapped 
in a mutually disjoint manner, a procedure described in Ref. [31] was 
used. To find mutually disjoint mappings of a pair of logical links, the 
algorithm given in Ref. [32] was used. Fundamental circuits and cutsets 
were found using procedures given in Ref. [30] and were part of the 
preprocessing phase. The survivability of a logical topology was tested 
by picking a physical link, removing all the logical links which used this 
physical link in their mapping, and checking if the resulting logical to
pology was connected. This test was repeated for every physical link. 

The statistics of interest were protection capacity (measured as 
average number of protection links added to a logical topology to make 
it survivable) and the execution time of the algorithms. 

We now make some general observations on the performance of 
these algorithms based on the trends that we noticed during the simu
lations as in Table 2 and Table 3. The results in these two tables confirm 
our expectation that GEN-CUTSET-SMART-SIMPLIFIED will perform 
better than CIRCUIT-SMART and CUTSET-SMART-SIMPLIFIED (when 
started with a circuit or a cutset sequence) in terms of number of addi
tional protection edges to be added. In terms of execution time, CUTSET- 
SMART-SIMPLIFIED performs significantly better than CIRCUIT-SMART 
and GEN-CUTSET-SMART-SIMPLIFIED when the logical topologies are 
sparse but at the same time requires significantly more protection edges. 
However, for dense logical topologies the difference in execution times 
is much smaller. Note that CIRCUIT-SMART and CUTSET-SMART- 
SIMPLIFIED were implemented with arbitrary circuit and cutset cover 

sequences. GEN-CUTSET-SMART-SIMPLIFIED was implemented with a 
generalized cutset cover sequence. 

It was shown in Ref. [3] that CUTSET-SMART-SIMPLIFIED and 
INCIDENCE-SMART are comparable with respect to execution times. But 
INCIDENCE-SMART is found to be better in terms of the number of 
protection edges needed. 

13.2. Multi-failure survivability 

In this section we present simulation results that provide a compar
ative evaluation of the algorithms CUTSET-SMART-SIMPLIFIED, CUT
SET-SMART, CIRCUIT-SMART and GEN-CUTSET-SMART which are 
denoted as A1, A2, A3, and A4, respectively. 

To compare the performance of CUTSET-SMART-SIMPLIFIED, CIR
CUIT-SMART, CUTSET-SMART, and GEN-CUTSET-SMART with respect 
to their ability to provide multiple failure survivability simulation 
studies were conducted using LEMON (Library for Efficient Modeling 
and Optimization in Networks) [33] and G++ under Linux system. The 
physical and logical topologies were regular topologies with connec
tivity equal to 3, 4, and 5 constructed using a procedure originally given 
by Harary and described in Ref. [30]. The number of nodes in the 
physical topologies was set to 50, 60, 70, 80, 90, and 100 nodes. The 
nodes in logical topologies were a subset of the physical nodes and the 
number of nodes in a logical topology was set to 50% of the nodes in the 
corresponding physical topology. 

For each combination of (topology connectivity, number of nodes in 
physical topology, number of physical link failures), 100 physical and 
corresponding logical topology pairs were generated and tested against 
4 algorithms described in the previous section. Given k-connected 
physical and logical topologies, the survivability of the GL under mul
tiple (2 to k − 1) physical link failures is determined by the number of 
GL’s which remain connected against physical link failures. Our simu
lation enumerated all possible combinations of physical link failures and 
evaluated how many GL’s could remain connected. The success rate in 
each case is calculated. 

First a spanning tree on a logical topology was generated and the 
fundamental circuits and cutsets with respect to the spanning tree were 
found. The generalized cutset cover sequence was generated using the 
algorithm 2. With the information of the fundamental cutsets, the Q −
Cover(bi) and Ŝ(bi) sets were generated as shown in (2) and (3). Then we 
applied the four algorithms (CUTSET-SMART-SIMPLIFIED, CIRCUIT- 
SMART, CUTSET-SMART, and GEN-CUTSET-SMART) and mapped 

Table 2 
Ave. No. of Protection Edges and Execution Time (Number of nodes = 50, 
Physical degree = 4.)  

Logical 
Degree 

Algorithm Protection 
Edges 

Execution Time 
(sec) 

2.5 CIRCUIT-SMART 15.99 0.543 44  
CUTSET-SMART- 
SIMPLIFIED 

26.23 0.071 91  

GEN-CUTSET-SMART- 
SIMPLIFIED 

12.93 0.508 66 

3.0 CIRCUIT-SMART 8.86 0.394 54  
CUTSET-SMART- 
SIMPLIFIED 

20.86 0.085 65  

GEN-CUTSET-SMART- 
SIMPLIFIED 

7.48 0.403 93 

3.5 CIRCUIT-SMART 5.98 0.327 5  
CUTSET-SMART- 
SIMPLIFIED 

16.1 0.097 35  

GEN-CUTSET-SMART- 
SIMPLIFIED 

5.5 0.312 49 

4.0 CIRCUIT-SMART 3.92 0.259 4  
CUTSET-SMART- 
SIMPLIFIED 

12.66 0.107 01  

GEN-CUTSET-SMART- 
SIMPLIFIED 

4.74 0.281 24  

Table 3 
Ave. No. of Protection Edges and Execution Time (Number of nodes = 100, 
Physical degree = 4.)  

Logical 
Degree 

Algorithm Protection 
Edges 

Execution Time 
(sec) 

2.5 CIRCUIT-SMART 41.59 4.929 08  
CUTSET-SMART- 
SIMPLIFIED 

56.57 0.309 11  

GEN-CUTSET-SMART- 
SIMPLIFIED 

35.8 4.762 46 

3.0 CIRCUIT-SMART 25.14 3.622 06  
CUTSET-SMART- 
SIMPLIFIED 

44.04 0.392 99  

GEN-CUTSET-SMART- 
SIMPLIFIED 

20.4 3.416 03 

3.5 CIRCUIT-SMART 14.07 2.504 07  
CUTSET-SMART- 
SIMPLIFIED 

36.08 0.461 03  

GEN-CUTSET-SMART- 
SIMPLIFIED 

11.48 2.440 2 

4.0 CIRCUIT-SMART 10.67 2.251 27  
CUTSET-SMART- 
SIMPLIFIED 

26.72 0.527 82  

GEN-CUTSET-SMART- 
SIMPLIFIED 

9.44 2.158 48  
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maximal number of edges disjointly in bi
⋃

A
⋃

B. If the disjoint mappings 
for some of the edges in bi

⋃
A
⋃

B do not exist, a parallel edge is added to 
the logical topology and the newly added edge is mapped disjointly with 
the original edge. At the end of the procedure, the unmapped logical 
edges were randomly mapped, which could increase the chance of sur
vivability for the logical mapping. 

The simulation results giving the success rate are shown in 
Tables 4–6. Notice that in Table 4, extra tests for the single failure case in 
3-connected physical and logical topologies are presented, which show 
that CUTSET-SMART and GEN-CUTSET-SMART can guarantee 100% 

survivability for the logical topology under a single physical link failure, 
while CUTSET-SMART-SIMPLIFIED and CIRCUIT-SMART can not. 

Based on the simulations, we summarize our observations as follows.  

• The value of SUM is at most 2. This can be reached when each hi = 1. 
In such cases, (15) and (16) simplify to β(A1, 1) ≥ 1/2, β(A2, g) ≥ 1/2. 
In spite of this low value on the corresponding robustness, algorithms 
A1 and A2 have good ability to provide survivability against multiple 
physical link failures.  

• As expected, A2 has higher potential to provide survivability against 
multiple failures compared to A1.  

• As expected, algorithms A3 and A4 have higher success rate 
compared to A1 and A2.  

• The success rate of all algorithms is higher for higher values of 
connectivity of physical topologies. This could be due to the avail
ability of a large number of disjoint paths. This calls for future 
research. 

Based on the above results, we can make some general observations.  

1. If the number of protection edges is of concern, then we recommend 
CIRCUIT-SMART.  

2. If computation time is of concern, we recommend CUTSET-SMART- 
SIMPLIFIED. 

3. If ability to provide survivability against multiple failures is of in
terest, then we recommend GEN-CUTSET-SMART. 

In conclusion, we wish to note that we have been able to use the 
power of duality to design cutset-based algorithms that have perfor
mance superior or comparable to the circuit-based approach. The 
algorithmic strategy developed in this paper will also be of interest in 
designing strategies for the SLTM problems when node failures are 
allowed [34,35]. 

13.3. Applications beyond IP-over-WDM optical networks 

In this work we have made the implicit assumption that the logical 
topology has lower connectivity than the physical topology. If the con
nectivity of the logical topology is much higher than the physical to
pology, then several alternate routes will become available at the logical 
layer. Then, one can take advantage of these routes at the logical layer, 
and in combination with the high resilience at the physical layer pro
vided by our algorithmic strategies, one can achieve much higher 
resilience of the overall network. Furthermore, though the algorithms 
developed in this paper have been motivated by the survivable logical 
topology mapping problem in an IP-over-WDM optical network, they are 
also of interest in solving sub-problems that arise in the design of sur
vivable inter-dependent multi-layer networks. A number of references 
pointing to applications of our work in the design of survivable cyber- 
physical systems may be found in Refs. [36–38] and the references 
therein. In particular, our strategies could serve as the basis of designing 
approaches to mitigate cascading failures in interdependent networks. 
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Table 4 
Success rate for 3-connected physical and logical topologies.  

3-conn 50 nodes 60 nodes 70 nodes 
Algorithms \ 

Failures 
1 2 1 2 1 2 

A1 92.173 71.857 89.711 65.294 89.429 64.338 
A2 92.987 73.701 90.533 67.080 90.371 66.024 
A3 100 85.367 100 83.775 100 82.263 
A4 100 86.426 100 84.406 100 83.375 

3-conn 80 nodes 90 nodes 100 nodes 
Algorithms \ 

Failures 
1 2 1 2 1 2 

A1 87.617 57.744 86.570 55.356 84.427 52.313 
A2 88.700 59.710 87.963 57.2 85.853 54.405 
A3 100 78.811 100 78.377 100 76.149 
A4 100 79.913 100 79.367 100 77.073  

Table 5 
Success rate for 4-connected physical and logical topologies.  

4-conn 50 nodes 60 nodes 70 nodes 
Algorithms \ 

Failures 
2 3 2 3 2 3 

A1 94.709 85.841 93.907 84.533 93.655 81.356 
A2 95.975 88.679 95.272 86.979 94.841 84.513 
A3 96.646 88.262 95.950 87.549 95.383 85.219 
A4 97.367 90.263 96.665 89.159 96.235 86.984 

4-conn 80 nodes 90 nodes 100 nodes 
Algorithms \ 

Failures 
2 3 2 3 2 3 

A1 92.381 80.498 91.575 78.445 91.000 76.815 
A2 94.018 83.343 93.373 81.564 93.043 79.780 
A3 94.801 83.473 93.983 81.802 93.466 79.700 
A4 95.639 85.396 95.018 83.819 94.41 81.582  

Table 6 
Success rate for 5-connected physical and logical topologies.  

5-conn 50 nodes 60 nodes 70 nodes 
Algorithms \ 

Failures 
2 3 2 3 2 3 

A1 99.764 99.450 99.785 99.366 99.809 99.246 
A2 99.912 99.653 99.880 99.634 99.888 99.583 
A3 99.877 99.617 99.869 99.541 99.867 99.473 
A4 99.956 99.810 99.935 99.771 99.937 99.746 

5-conn 80 nodes 90 nodes 100 nodes 
Algorithms \ 

Failures 
2 3 2 3 2 3 

A1 99.772 99.231 99.668 99.184 99.674 99.089 
A2 99.858 99.557 99.785 99.510 99.787 99.507 
A3 99.848 99.827 99.827 99.437 99.804 99.363 
A4 99.916 99.915 99.915 99.725 99.899 99.654  
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