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a b s t r a c t

The survivable logical topology mapping problem in an IP-over-WDM optical network is
to map each link (u, v) in the logical topology (at the IP layer) into a lightpath between
the nodes u and v in the physical topology (at the optical layer) such that failure of a
single physical link does not cause the logical topology to become disconnected. Kurant
and Thiran (2007) [8] presented an algorithmic framework called SMART that involves
successive contracting of circuits in the logical topology and mapping the logical links in
the circuits into edge-disjoint lightpaths in the physical topology. In a recent work from
Thulasiraman et al. (2009) [11] a dual framework involving cutsets was presented and it
was shown that both these frameworks possess the same algorithmic structure. Algorithms
CIRCUIT-SMART, CUTSET-SMART and INCIDENCE-SMART were also presented in [11]. All
these algorithms suffer from one important shortcoming, namely, disjoint lightpaths for
certain groups of logical links may not exist in the physical topology. Therefore, in such
cases, we will have to augment the logical topology with new logical links to guarantee
survivability. In this paper we address this augmentation problem. We first identify a
logical topology that admits a survivable mapping under a physical link failure as long as
the physical topology is 3-edge connected. We show how to embed this logical topology
on a given logical topology so that the augmented topology admits a survivability mapping
as long as the physical topology is 3-edge connected. We then generalize these results to
achieve augmentation for survivability of a given logical topology under multiple physical
link failures. Finally, we define the concept of survivability index of a mapping. We provide
simulation results to demonstrate that even when certain requirements of the generalized
augmentation procedure are relaxed, our approach will result in mappings that achieve a
high survivability index.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

An IP-over-WDM network implements Internet Proto-
col (IP) directly over a Wavelength Division Multiplexing
(WDM) network by mapping a set of given IP connections
as lightpaths in the WDM network [1,2]. A lightpath is an
all optical connection established by finding a path be-
tween the source and the destination of an IP connection in

∗ Corresponding author. Tel.: +1 405 325 0566; fax: +1 405 325 4044.
E-mail address: thulasi@ou.edu (K. Thulasiraman).

the WDM network and assigning it a wavelength [3]. Such
networks useOXCs to switch network traffic (lightpaths) in
the WDM layer and IP routers to route/reroute IP connec-
tions at the IP layer [1,2]. The set of IP routers and connec-
tions form the logical topology and OXCs along with actual
optical fibers form the physical topology. In the literature,
it is common to refer to IP connections as IP or logical links
(edges), IP routers as logical nodes (vertices), OXCs as phys-
ical nodes and fibers connecting the OXCs as physical links
(edges).

An optical fiber simultaneously carries several light-
paths. Therefore, the failure of an optical fiber discon-
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nects all the carried lightpaths, causing multiple failures
in the logical topology, which can severely impact the
entire network performance. Mechanisms that allow net-
works to deliver an acceptable level of service in the
presence of a physical edge failure or failures are re-
ferred to as survivability mechanisms and IP-over-WDM
networks that implement suchmechanisms are called sur-
vivable IP-over-WDM networks (henceforth, simply surviv-
able networks) [2]. In this paper, we only consider link
survivable networks i.e. networks that provide an accept-
able level of service in the presence of one or more sin-
gle link failures. The two widely discussed survivability
mechanisms in the literature are protection and restoration
[1,2]. Protection is generally provided at the physical layer
but can be implemented at the logical layer also [1,2].
It requires a dedicated backup lightpath for each working
lightpath such that the two lightpaths are link-disjoint.
The backup path is used only when the working lightpath
fails [2]. It is always possible to find two disjoint lightpaths,
if the physical topology is at least 2-edge connected [4].
Restoration is usually provided at the logical layer by set-
ting up working lightpaths for the IP connections and
then provisioning the physical network with some addi-
tional (spare) capacity that is used by the IP routers to
find backup lightpaths for the failed working lightpaths
[1,2]. However, backup paths can be guaranteed only if the
IP topology is initially embedded in such away that it stays
connected after a failure [5,6]. Modiano and Narula-Tam
[5,6] establish the necessary and sufficient conditions for
an IP-over-WDMnetwork employing restoration to be sur-
vivable. An IP-over-WDM network employing restoration
is survivable under a single link failure only if none of the
cutsets of the logical topology is carried by a single physi-
cal link. However, the fact that the number of cutsets in a
network is exponential in the number of nodes makes the
problem intractable [7].

Kurant and Thiran [8] suggests an approach, called
SMART, which finds survivable mappings for a logical-
physical topology pair by successively selecting logical
cycles (circuits) and finding disjoint mappings (paths) for
them in the physical topology. Though the number of
cycles in a logical topology grows very rapidly with the
number of nodes [9], the main feature of the SMART
approach is that it requires consideration of only a limited
number of cycles. But, the problemof finding disjoint paths
is NP-complete [10]. In [11] we established an approach
that is the dual of the approach in [8] and developed a
unifying algorithmic framework for the problem. We also
developed several concepts and results that provided the
basis for several efficient algorithms to find survivable
mappings. All these algorithms suffer from one important
shortcoming, namely, disjoint lightpaths for certain groups
of logical links may not exist in the physical topology.
Therefore, in such cases, we will have to augment the
logical topology with new logical links to guarantee
survivability. In this paper we address this augmentation
problem.

The rest of the paper is organized as follows.
In Section 2, we present basic concepts from graph

theory and review our work in [11]. We also illustrate
the survivable logical topology mapping problem with an

example. In Section 3 we first identify a logical topology
that admits a survivable mapping under a single physical
link failure as long as the physical topology is 3-edge
connected. We then show how to embed this topology on
a given logical topology so that the augmented topology
admits a survivable mapping as long as the physical
topology is 3-edge connected. In Section 4 we generalize
these results to achieve augmentation for survivability of a
given logical topology undermultiple physical link failures.
We also define the concept of the survivability index of a
logical topology mapping. We provide simulation results
to demonstrate that even when certain requirements of
the augmentation procedure are relaxed, our approachwill
result in mappings that achieve a high survivability index.
We conclude in Section 5 with a summary of our results
and some directions for future work.

2. Basic concepts, survivable logical topology mapping
problem and a unified algorithmic framework

The Survivable Logical Topology Mapping (SLTM) prob-
lem in an IP-over-WDMoptical network is tomap each link
(u, v) in the logical topology (at the IP layer) into a light-
path between the nodes u and v in the physical topology
(at the optical layer) such that failure of a physical link does
not cause the logical topology to become disconnected. It is
assumed that both the physical and logical topologies are
2-edge connected (in short, two-connected).

Fig. 1(a) and (b) show a logical topology and a physical
topology, respectively. Fig. 1(c) shows an unsurvivable
mapping of this logical topology. In this case, not all
the mappings are disjoint and the logical topology is
not survivable. For example, the failure of physical link
(4, 5) disconnects the logical topology. Fig. 1(d) shows
a survivable mapping. In this case also, it can be seen
that not all the mappings are disjoint and a physical
link failure may disconnect multiple logical links but the
logical topology still remains connected. For example,
if the physical link (5, 6) fails, logical links (2, 6) and
(4, 6) get disconnected but it is possible to reach all
the logical nodes through the remaining logical links.
It can be observed that finding disjoint mappings for
only the subset {(1, 2), (2, 4), (4, 6), (6, 1)} is sufficient
to guarantee survivability. The question then arises as to
how to select the groups of logical links to be mapped into
disjoint paths. The answer to this important question was
provided in [8].

In [8] the authors provide a framework called SMART
(SurvivableMappingAlgorithmbyRing Trimming). SMART
utilizes circuits to find survivable mappings for logical
topologies. The framework repeatedly picks connected
pieces (subgraphs) of the logical topology and finds
survivable mappings for these pieces. If a survivable
mapping is found for a piece, its links are short-circuited
(contracted) and the algorithm proceeds by picking
another piece. The process is repeated until the logical
topology is reduced to a single node or a search for a piece
with survivable mapping is unsuccessful. If the logical
topology is reduced to a single node, a survivable mapping
for the logical topology has been found; otherwise a
survivable mapping does not exist.
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Fig. 1. Illustration of mapping and survivability for general networks: (a) A logical topology; (b) A physical topology; (c) An unsurvivable mapping; (d) A
survivable mapping.

Duality between circuits and cuts in a graph is one
of the well-studied topics in graph theory. This con-
cept has played a significant role in the development of
methodologies for solving problems in various applica-
tions. Most of the early results in electrical circuit theory
were founded on the duality relationship between circuits
and cuts [12]. There is a wealth of literature on the role of
duality in network optimization (that is, discrete optimiza-
tion on graphs and networks) [13]. Most often, for a pri-
mal algorithm based on circuits there is a dual algorithm
based on cuts for the same problem. The primal and dual
algorithms possess certain characteristics that make one
superior to the other depending on the application. SMART
algorithm for the survivable logical topology mapping
problem is based on circuits. The question then arises
whether there exists a dual methodology based on cuts.
The work in [11] answered this question in the affirma-
tive and provided a unified algorithmic framework for the
SLTM problem. This work presented three methodologies
CIRCUIT-SMART, CUTSET-SMART and INCIDENCE-SMART.
Thulasiraman et al. [11] may be referred to for a detailed
discussion of these methodologies and their proof of cor-
rectness. In this sectionwe review INCIDENCE-SMART that
will be used in the remaining sections of this paper.

Consider a connected undirected graph G(V , E) with
vertex set V and edge set E. G is k-edge connected if at least
k edges have to be removed to disconnect G. Unless stated
otherwise, all graphs considered in this section are 2-edge
connected. Let (S, S̄) be a partition of the vertex set V . Here
S̄ denotes the complement of S in V , i.e. S̄ = V − S. Then
the set of edges with one vertex in S and the other in S̄ is
called a cut of G. This cut will also be denoted as (S, S̄).

For example, consider the graph G in Fig. 2(a). Here
the vertices are numbered as v1, v2, . . . , v6. The partition
(S, S̄) with S = {v1, v4, v6} and S̄ = {v2, v3, v5) defines
the cut shown in Fig. 2(b).

The following result will be used in the proof of
correctness of all the algorithms developed in the rest
of the paper. This is also the basis of the algorithmic
frameworks given in [11].

Theorem 1 ([12]). A graph is connected if and only if every
cut of the graph contains at least one edge.

We next present algorithm INCIDENCE-SMART from [11].
Given a logical topology GL and a physical topology GP .

Fig. 2. (a) Graph G; (b) A cut of G.

This algorithm specifies the sets of edges of GL that must
be mapped into mutually disjoint paths in the physical
topology. In certain cases, the algorithm adds certain
new edges to the given logical topology GL to guarantee
survivability. These new edges are added in parallel to
existing logical edges and are called protection edges.

To illustrate algorithm INCIDENCE-SMART, consider the
graph G in Fig. 2(a). It is assumed that vertex v6 is chosen
as the datum vertex. In step 1 this algorithm considers
the vertices v1, v2, v3, and v4 in that order and maps the
following sets of edges into mutually disjoint paths in the
physical topology.

At vertex v1 : {e1, e6, e7}.
At vertex v2 : {e2, e5, e11}.
At vertex v3 : {e3, e8}.
At vertex v4 : {e4, e10}.
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Fig. 3. Algorithm INCIDENCE-SMART.

The graphs that result after the application of step 1 on
the vertices v1, v2, v3, and v4 are shown in Fig. 4(a)–(d),
respectively.

In step 2, the algorithm picks vertex v5 that is of degree
1 in Fig. 4(d), adds a new edge (v5, v6) (see Fig. 4(e))
and maps the parallel edges connecting v5, v6 into disjoint
paths in the physical topology.

Proof of correctness of algorithm INCIDENCE-SMART is
given below for the sake of completeness.

Theorem 2 ([11]). Algorithm INCIDENCE-SMART provides a
survivable mapping of the edges of a logical graph GL.

Proof. Let v1, v2, . . . , vn−1 be the order in which the
vertices have been considered by algorithm INCIDENCE-
SMART. Consider any cut (S, S̄) in GL. Let the datum vertex
be in S̄. Let vi be the vertex in S with the highest index.
Then, in the current graph at the stepwhen vi is considered
by the algorithm it will not be adjacent to any vertex in
S. So, according to the algorithm vi will be connected to
at least two vertices in S̄, and the corresponding edges
connecting S and S̄ are mapped into disjoint lightpaths,
guaranteeing that at least one of these edges will remain in
the cut after a single edge failure in the physical topology
and so satisfying the condition of Theorem 1. Since this is
true for all cuts, themapping generated by the algorithm is
survivable. �

Note that at each step, algorithm INCIDENCE-SMART
requires mapping of two logical edges incident at a vertex
into mutually disjoint paths in the physical topology. Such
paths are guaranteed to exist as long as the physical
topology is 2-edge connected [14]. We state this result in
the following theorem.

Theorem 3. If protection edges are allowed and the physical
topology is 2-edge connected, then any logical topology can be
augmented such that the augmented logical topology admits
a survivable mapping.

3. A survivable logical topology structure and augmen-
tation for single link failure survivability

In this section, we first present a logical topology
that always has a survivable mapping as long as the
physical topology is 3-edge connected. Note that this will
be achieved without using protection edges. We then
show how this topology can be used to augment any
logical topology to guarantee a survivable mapping of the
augmented topology.

We define a graph to be k-vertex connected graph if at
least k vertices have to be removed to disconnect the graph.
We define the line graph of a graph as follows.

Given a graph G with m edges and n vertices, the
line graph L(G) of G has m vertices, with each vertex
corresponding to an edge in G, and has the edge set

{(u, v)| edges in G corresponding to vertices u
and v are adjacent}.

As an example, a graphG and the line graph L(G) are shown
in Fig. 5.

The following result is due to Dirac [14].

Theorem 4. Every k ≥ 2 vertices of a k-vertex connected
graph G lie on a circuit of G.

We now prove the following. Here Px,y refers to the path
between vertices x and y.



Author's personal copy

210 K. Thulasiraman et al. / Optical Switching and Networking 7 (2010) 206–214

Fig. 4. (a) After removing vertex v1 from graph G in Fig. 2(a); (b) After removing vertex v2 from graph in Fig. 4(a); (c) After removing vertex v3 from graph
in Fig. 4(b); (d) After removing vertex v4 from graph in Fig. 4(c); (e) New logical link (v5 , v6) added.

Fig. 5. (a) Graph G; (b) Line graph L(G).

Theorem 5. Given any three vertices x, y and z in a 3-edge
connected graph G, then there exist edge-disjoint paths Px,y,
Py,z and Pz,x in G.

Proof. Let G = (V , E) be a 3-edge-connected graph, with
x, y and z in V . Form G′ by adding three vertices x′, y′ and z ′,
and three copies of each edge xx′, yy′ and zz ′. By the edge
analogue of the Expansion Lemma (adding a new vertex
with three edges to old vertices), G′ is 3-edge connected.
The line graph L(G′) [14] is 3-vertex connected. By Dirac’s
Theorem, L(G′) has a shortest cycle C through vertices
representing xx′, yy′ and zz ′. Since the copies of each added
edge have the same closed neighborhood in L(G′), this
shortest cycle has only one copy each of xx′, yy′ and zz ′. The
internal vertices on the three paths joining the vertices xx′,
yy′ and zz ′ on C correspond to the desired three paths in
G. �

Consider next the graphGn,2 shown in Fig. 6. This graph has
n vertices v1, v2, . . . , vn. It has the following edges:

(1) (vi, vj), i = 1, 2, . . . , n − 3 and j = i + 1, i + 2 and
(2) (vn−2, vn−1), (vn−2, vn) and (vn−1, vn).

Fig. 6. Graph Gn,2 .

Note that the three edges in (2) form a complete subgraph
on the three vertices vn−2, vn−1, and vn.

The mapping given in algorithm MAP-Gn,2 of Fig. 7 will
be used in the proof of Theorem 6.

We now have the following result.

Theorem 6. The logical graph Gn,2 in Fig. 6 admits a
survivable mapping under a single physical edge failure if the
physical topology is 3-edge connected.

Proof. First we note that the two mutually disjoint paths
required in step 1 of MAP-Gn,2 of Fig. 7 exist if the physical
topology is 2-edge connected, and by Theorem 5 the three
mutually disjoint paths required in step 2 of this mapping
exist if the physical topology is 3-edge connected.

We now show that the mapping MAP-Gn,2 of Fig. 7 is a
survivable mapping of Gn,2, thereby completing the proof
of the theorem.
Case 1. Assume that vn−1 is not in S and let vi be the last
vertex in the sequence v1, v2, . . . , vn−2 that is in S.

In this case the vertices vi+1 and vi+2 will be in S̄. So the
edges (vi, vi+1) and (vi, vi+2) will be in the cut (S, S̄).
Case 2. Let vn−1 be in S. In this case the edges (vn, vn−1) and
(vn, vn−2) will be in the cut (S, S̄).

Thus, in both cases every cut of Gn,2 will have two edges
that have been mapped by MAP-Gn,2 into disjoint paths
in the physical topology. So, a single physical edge failure
will leave at least one edge in every cut, thereby proving
(by Theorem 1) that the graph Gn,2 admits a survivable
mapping under a single physical edge failure if the physical
topology is 3-edge connected. �
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Fig. 7. Algorithm MAP-Gn,2 .

Fig. 8. Algorithm AUGMENT (G′).

Given a logical topology that does not admit a survivable
mapping, we next investigate how this graph can be
augmented with new logical links so that the augmented
graph is survivable. Our interest is to achieve this without
adding protection edges. Note that there are more than
one ways to construct a survivable mapping [11]. The
procedure for augmentation depends on the algorithm
used to construct the survivable mapping. Assuming
that the algorithm INCIDENCE-SMART has been used to
construct the survivable mapping. Then our procedure for
augmentation will be as follows.

Note that all vertices in the graph G′ at the end of the
execution of step 1 in algorithm INCIDENCE-SMART will
have degree zero or one. Let V ′ be the set of vertices in G′

and E ′ be the set of edges in G′.
As an example, suppose the graph at the end of step 1 in

algorithm INCIDENCE-SMART is as shown in Fig. 9(a). Then
algorithmAUGMENTwill produce the augmented graph in
Fig. 9(b).

Given a logical topology G, the following algorithm
AUGMENT-MAP-INCIDENCE-SMART (see Fig. 10) uses al-
gorithm INCIDENCE-SMART (Fig. 3), algorithm AUGMENT
(G′) (Fig. 8) and algorithm MAP-Gn,2 (Fig. 7) to obtain an
augmented topology and a mapping of the augmented
topology that is survivable under a single physical edge
failure, assuming that the physical topology is 3-edge con-
nected.

Combining the proofs of Theorems 2 and 6 we obtain
the following.

Theorem 7. Given a 2-edge connected logical topology GL
and a 3-edge connected physical topology GP , algorithm
AUGMENT-MAP-INCIDENCE-SMART provides an augmen-
tation of GL and a mapping of the augmented graph that is
survivable under a single edge failure in GP .

4. Augmentation for survivability under multiple phys-
ical edge failures

In this section we generalize the results of Section 3.
First, we give a topology and a mapping that needs to
be done to guarantee survivability of this topology under
multiple physical edge failures. We then show how to
augment a given logical topology to achieve survivability
under multiple physical edge failures.

The graph Gn,k is defined as follows. This graph has n
vertices v1, v2, . . . , vn. It has the following edges:

1. (vi, vj), i = 1, 2, . . . , n− k− 1 and j = i+ 1, i+ 2, . . . ,
i + k and

2. The induced subgraph on the k+1 vertices vn−k, vn−k+1,
. . . , vn is a complete graph.

As an example, the graph G8,4 is shown in Fig. 11.
We define algorithm MAP-Gn,k, which is a generaliza-

tion of MAP-Gn,2 as follows.
We now have the following result.

Theorem 8. The logical graph Gn,k admits a survivable
mapping under k − 1 physical edge failures if the physical
topology is k-edge connected and there exist mutually disjoint
paths in the physical topology connecting the vertices of the
logical edges in the complete subgraph induced on the k + 1
vertices vn−k, vn−k+1, . . . , vn.

Proof. We first note that every cut of a complete graph on
k + 1 vertices has at least k edges.

We prove the result by showing that every cut (S, S̄)
of Gn,k has at least k edges that are mapped by algorithm
MAP-Gn,k into mutually disjoint paths in the physical
topology. Then,MAP-Gn,k would give a survivablemapping
of Gn−k tolerating k − 1 physical edge failures.

Consider a cut (S, S̄) of Gn,k. Assume node n is not in S.
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Fig. 9. (a) Graph G′ at the end of INCIDENCE-SMART; (b) Graph after augmentation of G′ .

Fig. 10. Algorithm AUGMENT-MAP-INCIDENCE-SMART.

Fig. 11. Graph G8,4 .

Case 1. All the vertices vn−k, vn−k+1, . . . , vn are in S̄.
In this case, let vi be the last vertex from the set

{v1, v2, . . . , vn−k−1} that is in S. Then, by definition, vi is
adjacent to the k vertices vi+1, vi+2, . . . , vi+k (See Fig. 11).
The corresponding k edges incident on vi are mapped by
algorithm MAP-Gn,k into mutually disjoint paths in the
physical topology (See step 1 in algorithmMAP-Gn,k). Since
the physical topology is k-edge connected, such mutually
disjoint paths exist in the physical topology [14].
Case 2. Let T be the subset of vertices of the set
{vn−k, vn−k+1, . . . , vn−1} that are in S. Let T̄ be the
complement of T in {vn−k, vn−k+1, . . . , vn−1, vn}. Note that
these vertices are in S̄. Then the set of edges connecting the
vertices in T to those in T̄ forms a subset of the cut (S, S̄).
This subset is in fact a cut of the complete subgraph on the
k+1 vertices vn−k, vn−k+1, . . . , vn and has at least k edges.

Thus, we have proved that every cut (S, S̄) of Gn,k has
at least k edges that are mapped by algorithm MAP-Gn,k

into mutually disjoint paths in the physical topology. This
guarantees that every cut of Gn,k will have at least one edge
after k − 1 physical edge failures, thereby demonstrating
that MAP-Gn,k provides a survivable mapping of Gn,k under
k−1 physical edge failures, if the conditions of the theorem
are satisfied. �

Wenext give a generalized version of algorithmAUGMENT-
MAP-INCIDENCE-SMART that achieves an augmentation of
a logical topology and provides a survivablemapping of the
augmented logical topology under k−1 physical edge fail-
ures, provided certain requirements are satisfied. In this
algorithm the augmentation procedure given in Fig. 13 is
used.

Combining the proofs in Theorems 2 and 8 we obtain
the following.

Theorem 9. Given a k-edge connected logical topology
GL and a k-edge connected physical topology GP , algo-
rithm GENERAL-AUGMENT-MAP-INCIDENCE-SMART (see
Fig. 14) provides an augmentation of GL and amapping of the
augmented graph that is survivable under k− 1 edge failures
in GP , provided there exist mutually disjoint paths connect-
ing the vertices of the logical edges of the complete subgraph
induced on the k + 1 vertices vn−k, vn−k+1, . . . , vn.

Algorithm MAP-Gn,k (Fig. 12) requires that we be able
to find mutually disjoint paths in the physical topology for
the k(k + 1)/2 edges of the complete subgraph of Gn,k on
the vertices vn−k, vn−k+1, . . . , vn. One cannot guarantee the
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Fig. 12. Algorithm MAP-Gn,k .

Fig. 13. GENERAL-AUGMENT (G).

Fig. 14. Algorithm GENERAL-AUGMENT-MAP-INCIDENCE-SMART.

existence of such paths. Suppose we replace step (2) in
algorithm MAP-Gn,k by step 2′ as follows.

Step 2′: For i = n − k, n − k + 1, . . . , n − 1

map the edges(vi, vj), j = i + 1, i + 2, . . . , n.

Then, let us investigate how well this modified mapping is
able to help tolerate k − 1 physical edge failures. Towards
this end, we define the survivability index of a mapping

∏
with respect to a logical topology GL as the fraction of

failure patterns of a specified size under which the given
logical topology remains connected when the logical links
aremapped by

∏
. We performed extensive simulations on

Gn,k for different values of n and k. In each case the physical
topology is chosen as a k-connected graph generated by the
procedure given in [12, chapter 8]. We considered 5000
randomly generated physical link failure patterns of size
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Fig. 15. Survivability index.

k−1 and checked if the logical topology remains connected
after the occurrence of each failure pattern. Using the
number of times the logical topology tolerated the failure
patterns, the survivability index is calculated in each case
and is given in the table of Fig. 15.

We note that for a fixed value of k, the survivability
index of themodifiedmapping ofGn,k increaseswithn. This
is because, as n increase, the number of cuts of Gn,k that
are affected by the edges involved in the modified step 2′

decreases, thereby increasing the survivability index. For
a fixed value of n, the survivability index also increases
as the value of k increases. This is because, as the value
of k increases, the connectivity (and hence density) of the
physical topology also increases, thereby decreasing the
probability of picking a failure pattern under which the
logical topology gets disconnected. Overall, we find that
the survivability index of the modified mapping is quite
high. In other words, relaxing the requirement of step 2 in
MAP-Gn,k does not result in a significant reduction in the
survivability index.

5. Summary

Given a logical topology in an IP-over-WDM optical
network, we investigated the problem of augmenting this
topology with additional links so that the augmented
topology admits a mapping under which it remains
connected when one or more physical link failures occur.
We identified a special logical topology structure that
can be used to achieve the required augmentation. The
structure of this topology depends on the number of
physical link failures that are required to be tolerated. An
interesting future direction of research is to identify other
structures that can be used to achieve the augmentation.
In doing so, we also need to make sure that the number of
additional links to be added is as small as possible.
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