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Cross-Layer Network Survivability Under
Multiple Cross-Layer Metrics

Zhili Zhou, Tachun Lin, Krishnaiyan Thulasiraman, Guoliang Xue, and Sartaj Sahni

Abstract—Given a cross-layer network with logical and
physical topologies, the survivable logical topology routing
problem is to route each link in the logical layer with a path
in the physical topology between the end nodes of a logical
link such that the logical topology remains connected after
a physical link fails. The mixed-integer linear program-
ming (MILP) formulation to determine such a routing
has been considered in a recent paper. Using this formu-
lation as a basic building block, in this paper we present
unified MILP formulations to determine a survivable logi-
cal topology routing that also satisfies one of four cross-
layer metrics: 1) minimizing the number of logical links
to be added to guarantee the existence of survivable logical
topology routing, 2) maximizing the capacity of the logical
topology, 3) maximizing the connectivity of the logical top-
ology after a physical link failure, and 4) maximizing the
minimum cross-layer cut. We also provide heuristics for
these problems and compare the performance of these heu-
ristics and MILPs using extensive simulations.

Index Terms—Cross-layer networks; Cross-layer reliabil-
ity metrics; Cross-layer survivability; IP-over-WDM optical
networks; Mathematical programming; Network augmen-
tation; Network virtualization.

1. INTRODUCTION

ver the past decade, explosive growth in mobile and

Internet traffic has pushed demands for higher
capacity in the data transmission of telecommunication
networks. The data transmission rate of fiber optics net-
works has reached 305 Th/s according to a recent paper
[1]. When failure occurs under large-capacity transmission,
it causes broader impacts and catastrophic results. Thus,
reliability has become an issue of great interest in the
design of modern telecommunication networks, and has
been intensively studied in single-layer communication
networks.
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In this paper, we focus on assessing cross-layer network
reliability. An example of a cross-layer network architec-
ture is the Internet Protocol over wavelength division mul-
tiplexing (IP-over-WDM) network, which is composed of
logical (upper-layer, IP) and physical (lower-layer, WDM)
networks. The demands of a link in the logical network
are transmitted through a path connecting the correspond-
ing node pair in the physical network. This logical link to
physical-path mapping is called cross-layer mapping. We
will use logical, upper-layer, and IP networks interchange-
ably, as well as physical, lower-layer, and WDM networks.
We also refer to the topologies of the IP and WDM networks
as logical and physical topologies, respectively.

In a logical topology, nodes and links represent IP rout-
ers and links connecting them, respectively. Similarly,
physical nodes represent the optical cross-connect (OXC)
and optical add-drop multiplexer (OADM), while the
physical edges connecting them represent optical fibers.
A lightpath is a cross-layer mapping of a logical link onto
a path connecting corresponding physical nodes, through
which transmission occurs on a single wavelength thereby
bypassing opto-electro-optic (O-E-O) conversions on the
intermediate nodes of the path.

Another example of cross-layer networks is encountered
in the study of network virtualization, where the virtual
and real (physically existing) networks are, respectively,
the logical and physical networks. Under the assumption
that each virtual node is mapped to a physical node, the
implementation of a virtual link is also realized through
the cross-layer mapping.

Due to the fact that each physical link may carry traffic/
demands of multiple logical links, a single physical link
failure could disconnect multiple logical links in cross-layer
networks. This has given rise to extensive interest in the
study of reliability issues in cross-layer networks under
multiple survivability evaluation metrics. A general defini-
tion of cross-layer network survivability is to identify a
cross-layer mapping so that the logical network remains
connected after any single physical link failure. A mapping
that satisfies this evaluation metric is called a survivable
cross-layer mapping. This survivability study is applicable
to any cross-layer networks. It is obvious that the surviv-
ability of a mapping can be guaranteed if the lightpaths
corresponding to this mapping are all link-disjoint.
However, this is only a sufficient condition.

Furthermore, with the consideration of logical link de-
mands and physical link capacities, the evaluation metric
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for cross-layer mapping has been extended from a pure
survivability metric to an integrated one satisfying surviv-
ability and demands. This extension metric was first
introduced by Lin et al. [2,3]. A cross-layer mapping is
called a weakly survivable mapping if the logical network
remains connected after a single physical link failure. A
weakly survivable routing that also satisfies physical link
capacity and logical demand constraints is called strongly
survivable. Figure 1 illustrates weakly and strongly surviv-
able cross-layer mappings. Here the vertical dashed lines
show the correspondence between logical and physical
nodes. Also, the capacities of physical links are shown
on the corresponding links. Figure 1(a) provides the topol-
ogies and attributes of logical and physical networks.
Figures 1(b) and 1(c) illustrate survivable cross-layer map-
pings with partial and full demand satisfaction, namely
weakly and strongly survivable mapping, correspondingly.

Most of the papers in the literature deal with determining
a survivable routing of logical links. In contrast, our
focus in this paper is to study the integrated design of
cross-layer mappings that satisfy certain quality of service
requirements besides the survivability condition. For this
purpose we identify three cross-layer metrics and present
mixed-integer linear programs (MILPs) to determine a rout-
ing that maximizes one of these metrics. We also provide an
MILP for the logical topology augmentation problem. Our
MILPs start with an MILP for the survivable logical topol-
ogy routing problem. We have chosen the MILP given in [2],
which enforces the connectivity requirement through the
existence of a spanning tree and does not require the expo-
nential number of variables used by other MILPs. This
MILP is reviewed in Section III after a survey of the
literature on related works in Section II. All the MILPs
developed in this paper use this MILP as a building block.
The main contributions of the paper are summarized below.

e Minimum logical topology augmentation problem: Given
a logical topology, the augmentation problem is to add a
minimum number of additional links to the logical
topology that guarantees the existence of a survivable
routing of all the logical links of the augmented logical
graph. Two earlier works that considered this problem
are Thulasiraman et al. [4] and Liu and Ruan [5].
Neither of these two approaches solves the minimum

" logical topology
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augmentation problem. In Section IV we give an MILP
that solves the minimum augmentation problem.
Introduction of a new metric “after-failure connectivity”
and determining a routing that maximizes after-failure
connectivity: Suppose a logical graph is k-connected.
(That is, at least % logical links have to be disconnected
to disconnect the logical graph.) A survivable routing
only guarantees that the logical graph will remain
1-connected after a physical link failure. Since one physi-
cal link failure may disconnect several logical links, a
number of links (more than % links) may get disconnected
when two or more failures occur, causing disconnection of
the logical graph. To achieve a routing that can survive
more than one physical link failure, we need to ensure
that the connectivity of the logical graph is as high as
possible after a single physical failure. With this in view
in Subsection V.A we define a new metric called after-fail-
ure connectivity of the logical graph that is the connec-
tivity of the logical graph after a single physical failure.
The larger the value of after-failure connectivity of a
routing, the better its ability to survive multiple physical
faults. Thus the after-failure connectivity of a routing is a
measure of the ability of the logical graph to remain
connected after multiple physical link failures. Our
interest is to determine a routing that has as high a value
of after-failure connectivity as possible. We give in
Subsection V.A an MILP to determine a survivable rout-
ing that maximizes the after-failure connectivity of the
logical graph. Our MILP has two significant features:
1) normally calculating the connectivity of the logical
graph after each physical failure would require n(n —
1)/2 maximum flow computations. Using a result in net-
work flow theory we reduce the problem to one of n maxi-
mum flow computations. 2) We are required to calculate
the connectivity of the logical graph after each failure. In
other words, connectivity computation has to be repeated
on m after-failure logical graphs. Normally this would
require solving m separate integer linear programs if
we explicitly generate the logical graph after each one
of the m physical failures. See [6], where such an ap-
proach was taken in a different context. In our MILP
we implicitly generate the after-failure graphs so that
just one MILP is enough to calculate the after-failure
connectivity.

(a) Given physical/logical topologies

Fig. 1.

(b) Weakly survivable mapping

(c) Strongly survivable mapping

Cross-layer survivability illustration.
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e Introduction of a new metric “logical capacity” and deter-
mining a routing that maximizes logical capacity: Given
a survivable routing, let us associate with each logical
link (s,#) a capacity equal to the capacity of the corre-
sponding lightpath. Using these link capacities let us
find the maximum s — ¢ flow between the nodes s and ¢
of each logical link. The capacity of the logical graph is
the minimum of the maximum s - ¢ flows over all pairs
of nodes in the logical graph constructed. When a physi-
cal link fails, several logical links could fail. The larger
the capacity of the logical graph under a given routing,
the greater the capacity available for routing after a
physical link failure. Thus the logical capacity is a mea-
sure of the available capacity after a failure. In
Subsection V.B we provide an MILP that achieves a rout-
ing that maximizes the capacity of the logical graph. This
is in contrast with our DRCN paper [3] that achieves a
routing that maximizes the total capacity (sum of all log-
ical link capacities, not logical capacity as defined above)
available before and after a physical link failure.

¢ Determining a routing that maximizes minimum cross-
layer cut (MCLC): In [7] Lee and Modiano defined the
concept of MCLC. The MCLC value of a given survivable
logical topology routing is the minimum number of physi-
cal link failures that would cause the logical layer to
become disconnected. For example, if the MCLC value
of a routing is 5, this means that the logical graph will
remain connected after any set of five simultaneous
physical link failures. In Subsection V.C we give an
MILP that determines a routing that maximizes
MCLC, in contrast to the work in [7] that determines
the MCLC value of a given routing.

In Section VI we provide heuristics for all the optimiza-
tion problems considered in earlier sections. In Section VII
we provide extensive simulation results evaluating the per-
formance of the heuristics and the corresponding MILPs.

II. RELATED WORK

A typical network reliability problem is to efficiently
calculate the probability that a specified set of nodes can
communicate with each other at a given time. The research
works in the literature developed an exact solution, Monte
Carlo simulation, and the polynomial expression for net-
work reliability estimations in single-layer networks.
Agrawal and Barlow [8] provided a survey for early exact
factoring algorithms with domination theory. Rosenthal
and Frisque [9] and Shooman and Kershenbaum [10,11]
utilized network transformation and reduction for network
reliability estimation. Dikbiyik et al. [12] utilized preprovi-
sioning/reprovisioning and hold-lightpath schemes, which
balanced optical network availability, resource efficiency,
and protection through excess capacity management.
These research works were for single-layer networks and
cannot estimate cross-layer network reliability, as they as-
sumed that link failures are independent. In fact, a single
physical link failure may cause multiple failures in the
logical network. Monte Carlo simulation was also used
for estimating single-layer reliability for some fixed link
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failure probability. In [13], a Monte Carlo method is given
to estimate the failure probability with random network link
states. With Monte Carlo simulation, network reliability
could be approximated to an arbitrary accuracy. The compu-
tational performance of simulations was restricted by a
large number of iterations and repeating them with differ-
ent reliability indices. A randomized fully polynomial
approximation scheme for the all-pairs reliability problem
was given in [14]. A comprehensive study of combinatorial
aspects of the network reliability problem may be found in
[15]. Recently, there has been interest in the study of the
network reliability problem when links and nodes are
broken in a probabilistic manner. Liew and Lu [16] and
and Neumayer et al. [17] discussed this problem and have
several references to early related works.

As noted earlier, the survivability of a logical topology
mapping can be guaranteed if the lightpaths in the physi-
cal topology corresponding to this mapping are all link-
disjoint. Since finding mutually disjoint paths between
multiple pairs of nodes is NP-complete [18], the cross-layer
network reliability problem with survivability as an evalu-
ation metric is also NP-complete. Modiano and Narula-
Tam [19] have given a necessary and sufficient condition
for a cross-layer mapping to be survivable under a single
physical link failure in IP-over-WDM networks, and formu-
lated the problem as an integer linear program (ILP).
Todimala and Ramamurthy [20] adapted the concept of
a shared risk link group (SRLG) introduced in [21] and also
computed the routing through an ILP formulation.
Extensions of [19] were given by Kan et al. in [6], which
discussed the relationship between survivable lightpath
routing and spare capacity requirements on the logical
links satisfying the original traffic demands after failures.
Lin et al. [2,3] discussed rerouting disconnected logical
links due to a physical link failure to maximize the sum
of satisfied demands. Lin ez al. [3] also studied spare capac-
ity assignment to physical links to guarantee the availabil-
ity of capacities for rerouting after a failure. Similar to [3],
Vadrevu et al. [22] also proposed ILPs and heuristics
addressing survivability and reroutability for logical links
with backup capacity sharing after any single physical link
failure.

A common drawback of ILP/MILP approaches is that
they are not scalable as the network size increases.
Hence, heuristic approaches were designed to overcome
such issues. Kurant and Thiran [23] proposed the surviv-
able mapping by ring trimming (SMART) framework,
which maps the links of certain subgraphs of the given log-
ical graph into link-disjoint paths. Lee et al. [24] solved the
same problem utilizing the concept of ear-decomposition in
graph theory. Javed et al. [25,26] obtained improved heu-
ristics based on SMART. Using duality theory in graphs,
a generalized theory of logical topology survivability was
given in [27-29]. A new structural approach based on
the logical protecting spanning tree set concept was intro-
duced in [30]. Lin et al. [31] also presented an integrated
approach to design survivable logical topology routing
and localize physical link failures. Operations research
techniques, such as column generation, have been incorpo-
rated into MILP formulations to solve similar problems.
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Jaumard and Hoang [32] proposed an MILP formulation
and a solution approach based on the column generation
technique that can generate exact solutions for different
scales of logical networks. Two works related to disaster
aware survivability in the context of cloud computing and
survivable infrastructure designs are reported in [33,34].

III. WEAKLY SURVIVABLE RouTING MAaxmMIzZING ToTAL
DeMAND SATISFIED: REVIEW OoF AN MILP [2,3]

We use the terms network and topology, edge and link,
node and vertex, interchangeably throughout the paper.
Let G = (V.,E;r) be a logical network and Gp =
(Vp,Ep) be a physical network in a cross-layer network.
Let (i,j) be a physical link and (s,f) be a logical link.
The capacity on physical link (i.j) is c¢;;, and the demand
on logical link (s, t) is di;. We assume that both the logical
and physical networks are at least two-edge connected.

Definition 1: A logical topology mapping in a cross-layer
network with logical topology G; = (V,E;) and physical
topology Gp = (Vp, Ep) is weakly survivable if G; remains
connected after a link failure in Gp.

In this section we review an MILP given in [3] to deter-
mine a weakly survivable routing in a cross-layer network
that maximizes the sum of all logical demands satisfied
subject to the limits on the capacities of the physical link.
This MILP formulation to be called WSR-MD is the basis of
all the MILP formulations given in the rest of the paper.
See Table I for the definitions of the variables used in
the WSR-MD formulation.

WSR-MD: MILP to determine a weakly survivable
logical topology routing maximizing the total demand:

max Z Pst (1
(s.)EEY
1, if i =s,
st Y yg- Yo=1-1 ifi=t
GIekr U<k 0. ifi#{s.t},
1€Vp,(s,t) e Eyp, (2)
TABLE I
VARIABLES UseED IN MILP FormuraTion WSR-MD
Variable Description
yf} binary variable indicating whether the logical link (s,t) €

E; is routed through the physical link (i,j) € Ep. If yes,
yf} = 1; otherwise, y&f = 0.

f flow on physical link (i,j) due to lightpath (s.#)

r?t fractional variable for connectivity constraints. r¥, = 0 if
logical link (s,¢) is routed through physical link (i, ).

Pst capacity for the logical link (s, ¢), where p,, is the smallest

capacity of links in the lightpath.
cjj capacity on the physical link (i.j). ¢; = cj;.
dgy demand for the logical link (s,?). dy = dys.
M a large positive number
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yi+y8<1,  (.Jj)€Ep (s.t) €EL, 3)
Y Oftyhs2 () EEL @)

@)).G:)EEp

pet»  ifi=s,
st _ fE=1- ifi=t¢ 1€Vp,(s,t)EE
i Ji Psts ’ P> \o, Ls
(ij)€Ep (i)€Ep O, lf l ?/: {S.t},
(5)
Pst < dsts (S, t) € ELs (6)

fy <My and fi <Myf, (.j)€EpG.)€E, ()

ij =

S (FE+f <cy Q) €Ep. €)
(sit)EEy,

Z i Z i -1, ifs=vy,
Tt = Tis = . v €V, (i.j) €Ep,

Ok, 5k, v ifs#un,
9)
0<rl <1-(f+yH. (i) €Ep.(s.) €Ey.  (10)
0<r <1-G¥+yH.  (J)€Ep.(s.)eEy. (A1)

v €40, 1,7 f.py 20, (s,t) € EL,(i.)) € Ep.

Constraint (2) with binary variable yf} provides a cross-
layer routing for each logical link (s, ¢) with single unit flow.
Constraint (3) guarantees that a logical-layer routing is not
routed through a physical-layer link in its two directions.
Constraint (4) eliminates other loops by avoiding a logical-
layer routing to revisit the same node on the physical rout-
ing. Without constraints (3) and (4), constraint (2) itself will
not be able to avoid self-loops and re-entry of the same
node. Constraints (5) and (6) push a flow of value p
through the logical-layer routing selected for logical link
(s,t). Constraint (7) guarantees that each physical link
(i,j) carries flow only if the logical-layer routing is routed
through at least one direction of the physical link. Here M
is a very large number greater than the maximum link
capacity. Constraint (8) requires that the total flow of all
the logical-layer routings carried by each physical-layer
link is no more than the corresponding physical link capac-
ity. Constraints (9)-(11) ensure that the logical network
after the failure of each physical link contains a spanning
tree. Constraint (9) is used to guarantee the existence of a
logical spanning structure after a physical link failure.
Constraints (10) and (11) make sure that the spanning tree
structure is composed of the logical edges not disconnected
by the failure of a physical link (i, /). We wish to note that
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the survivability constraints (9)-(11) were first employed in
Deng et al.’s paper [35].

IV. Mmnmmvum LocicaL ToPOLOGY AUGMENTATION FOR
GUARANTEED WEAKLY SURVIVABLE ROUTING

Given a cross-layer network, it is possible that the logical
topology does not permit a weakly survivable routing. In
such a case we need to add additional logical links to guar-
antee the existence of a weakly survivable routing. This
augmentation problem was earlier considered in [4,5]. In
this section we now show how to enhance the WSR-MD
algorithm to accommodate steps to augment the logical
network with a minimum number of additional links so
that the augmented network admits a weakly survivable
routing. It is shown in [4] that such an augmentation is
always possible if the physical network is at least three-
edge connected.

Let L;, be the collection of all ordered pairs of vertices in
the logical network. Some of these ordered pairs may not
represent links in the original logical network. We introduce
auxiliary variable i, toindicate whether (s, #) is alink in the
logical network. (s, #) could be a link in the original logical
network or was added during augmentation. We let g,
be the variable that indicates whether (s,?) is a link in
the original logical network G;,. Then, we have the following.

Logical link augmentation constraints:

8st < hsta (3, t) € LL7 (12)

yl] <hst» (S’ t) ELL~(i7j) EEP? (13)

hy, ifi=s,

DY Dy =he ifi=t. i€Vp(spELL
(@J)eEp (.1)€Ep 0, ifi{st)

(14)

uhy €10.1}.  (s.t) €Ly, (15)

Constraint (12) builds the connection between the indica-
tor g, and variable hgy. If (s,#) is a link in the given
logical network (that is, g, = 1), then (s, ¢) exists in the aug-
mented network (that is, Ay = 1). So, in this case, g, < hg,.
If g = 0, constraint (12) is trivially satisfied. Constraint
(13) indicates that a logical routing is generated only if
(s,t) is in the augmented network. Constraint (14), similar
to constraint (2), provides logical routings for original and
augmented links in the logical topology.

The MILP formulation for the minimum logical topology
augmentation problem is as follows.

WSR-MLA: Minimal logical topology augmentation for
guaranteed weakly survivable routing:

Zhou et al.

min Z hg

(s.t)eLy,
s. t. Constraints (3), (4), (9) - (15).

V. WEAKLY SURVIVABLE ROUTING UNDER CrROSS-LAYER
METRICS

In this section we develop MILP formulations to deter-
mine a survivable logical topology routing that maximizes
one of three cross-layer metrics.

A. Maximizing the After-Failure Connectivity of the
Logical Topology

The connectivity of a graph is the smallest number
of edges whose removal disconnects the graph [36]. Our
interest is to find a survivable logical topology routing that
maximizes the after-failure connectivity of the logical top-
ology after a single physical link failure. This is equivalent
to finding a survivable logical routing that maximizes the
number of edges remaining in any cut of Gy after any
physical link failure.

In the following Gg will refer to the graph that results
from deleting those links in Gy, that get broken when physi-
cal link (i,j) fails. Let k;;(s, ) denote the maximum number
of link-disjoint paths between logical nodes s and ¢ in G%,

which is the s — ¢ connectivity of GiLj [36]. Then the after-
failure connectivity of G; under a given routing is
ming sey, ek, Rij(s.t)}. Our objective is to determine a
survivable logical routing that maximizes the after-failure
connectivity of Gy..

Let kY, (s,t) denote the flow on link (v,w) € E, due to an
s—t flow in GLJ Picking a node s, the following MILP will
calculate the maximum number of link-disjoint s, — ¢ paths
for all ¢ € V;, in each GY, and then pick the minimum of
these numbers as the after-failure connectivity of Gj.
Note that we do not have to calculate the maximum num-
ber of link-disjoint paths between all pairs of logical nodes s
and ¢. See [37] for the correctness of this approach.

Given sy, € V7, teVy,

max k (16)

Z kfjjw(SO, t) -

(v,w)EE],
kij(S(), t),

= _kij(SOvt)v ifv= t,
0, if v # {sg,t},

> Khu(so.t)
(wv)eEr
if v = s, veVy

veVy, (@jeEp, @17)

UEVL

kY, (so. 1) + By (so. 1) < 1,

(v.w), (w,v) € Er,(i,j) €Ep,t € V], (18)
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Y (kdu(so.0) + kio(so.t) <2, (i) €Ep. (19)

(v,w),(w,v)EE],
Rho(so.t) S1-y0%, (i) €Ep,(v,w) €EL,  (20)
k < kj(so, ), (i.) € Ep, (21)

@.J) € Ep. (v,w) € Ef,.
(22)

Ry € 10,1}, kyj(so.0) € Z*,

Note that constraints (18) and (19) guarantee that logical
routings of (sg,¢) generated by constraint (17) are link-
disjoint. Constraint (20) guarantees that only edges that
are not broken due to (i,j) € Ep failure are considered when
calculating k;;(so.?). This interesting feature helps us avoid
calculating GY explicitly for each (i, /), thereby allowing us to
provide one single formulation instead of several formula-
tions, one for each physical link (Z,7).

Now using objective (16) in place of objective (1) and add-
ing the constraints (17)-(22) to the MILP (WSR-MD) we get
the following MILP WSR-AFC that determines a surviv-
able logical topology routing that maximizes the after-
failure connectivity of Gy.

WSR-AFC: Weakly survivable routing maximizing
after-failure connectivity of logical topology:

max k

s. t. Constraints (2)-(4), (9)-(11), (17)~(22).

We wish to note that after-failure connectivity is a measure
of the ability of a logical topology routing to provide surviv-
ability against multiple failures. If this connectivity is
larger, then one can expect the routing to provide surviv-
ability against a larger number of physical link failures.

B. Maximizing the Capacity of the Logical Topology

Given a routing that achieves a demand of p,,, on logical
link (v,w), let ¥(s,?) be the maximum flow between any
pair of nodes s,t € V;, while treating p,, as the capacity
oflink (v,w) € E},. Then we define the capacity of G;, under
the given routing as min, ey, {¥(s.?)}. Our interest is to de-
termine a survivable logical routing that maximizes the
logical capacity. We proceed as follows.

Let £, (s, ) be the flow on logical link (v, w) due to a flow
Y(s,t) between nodes s and ¢ in V. The following linear
program determines ¥(s,¢) for each pair of nodes s and ¢
in V; and picks the minimum of these maximum flows,
which is the capacity of Gy:

maxf (23)
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s. t. Z fvw(svt)_ Z fwv(s’t)

(vw)ekE], (ww)eEr,
Y(s,t), ifv=s, s, t,veVy
=4 -Y(s,t), ifv=t, s, t,v eV, (24)
0, if v # {s,t}, s,t,veVy
fvw(svt)+fwv(sat) < Pows s7tEVL’(U»w) EEL» (25)
f<¥s.0,  steVy, (26)
Fow(s.t),®(s,8).f 20, steV, (v.w)eE,. (27

Using the objective (23) in place of objective (1) and add-
ing the constraints (24)-(27) to the MILP (WSR-MD), we
get the following MILP that determines a survivable
logical topology routing that maximizes the capacity of
the logical topology Gi.

WSR-MLC: Weakly survivable routing with maximal
logical capacity:

max f

s. t. Constraints (2)—(11) and (24)—(27).

C. Maximizing the Min-Cross-Layer Cut

Given a logical topology routing R, the MCLC (R) of R is
defined in [7] as the smallest number of physical link fail-
ures that will disconnect the logical topology. We wish to
find a routing R that has the maximum value for (R). If
this maximum value is greater than or equal to 1, then that
routing will be survivable.

In [7] Lee and Modiano showed that finding a routing
that has the largest MCLC value is NP-complete. So they
presented an ILP to find a routing that minimizes a quan-
tity whose reciprocal gives a lower bound on the MCLC
value. Lee and Modiano [7] also presented an ILP Myc1c
to find the MCLC value of a given logical topology routing.
We now show how Mycic can be integrated with the con-
straints (1)-(5) of Section III to yield an ILP for finding a
logical topology routing with the largest MCLC value. This
ILP is given in objective (28)-(35).

WSR-MCLC: Weakly survivable routing with maximum
MCLC value:

min A

s. t. Constraints (2)—(4)

1> Z vij, (28)
@)ekp

&<y (i.J) €Ep, (29)

& <y €B.  (.))€Ep. (30)
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&2yt -1.G.)€EL,  (@.j)€Ep, (31
-yl < Y &L (s.t)€EL (32)
(ty)eEp
Dowez (33)
seVy,
wo =0, (34)

l//s.l/ij,ff; €{0,1},21>0, s, t eV, (s,t) € Er,(1,)) € Ep.

(35)

First we note that the variables v;;. ¥/, and y; used in our
ILP correspond to the variables y;.f fjt, and d; used in
Myc1c of [7]. Second, we point out that constraint (3) in [7],

wi-ys < Yyl V(s.t) €Ep,

(i))eEp

should be replaced with

-l < D v, V(s.t) €Ep, (36)

(ty)eEp

due to the fact that the identification of whether s and ¢ are
connected is evaluated by whether s is disconnected from
t or t is disconnected from s. To obtain this bidirection

information, an absolute value is used as shown in con-
straint (36).

The main difficulty in using Mycic is that it has a con-
straint that involves the nonlinear term uijyff . This con-
straint needs to be replaced by an equivalent set of
constraints. For this purpose we introduced a new variable
.ff} that indicates whether the routing of (s, #) is impacted by
the failure of physical link (i,j). With this new variable
constraints (29)-(31) represent a set of constraints equiva-
lent to the following constraint:

st __ .AySt
D &=

())eEp (iy)eEp

(s,t) € Ey.

This follows because ys! = 1 = uljyl = y; and St = y;; be-

cause of constraints (29) and (31). ySt =0=> vl]ys‘ =0 and
5th = 0 because of constraint (30).

Then constraint (32) can be further linearized as
vi—we< ) &L(s.t) €EyL
())ekp
vy < Y E(s.t) €Ep.
(j)eEp

VI. HEURISTICS

The MILP formulations presented in Sections IV and
V require high execution times, though they produce
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optimal/feasible solutions. To mitigate the computational
complexity of these formulations, we present in this section
heuristics for all the problems considered.

A. Heuristic for Logical Topology Augmentation

The heuristic augments the given logical topology with
additional links so that a survivable routing is guaranteed
for the augmented logical topology. The routing correspond-
ing to each logical link is also generated. This procedure is
provided in Algorithm 1.

Algorithm 1 Augment for Survivability
Input: Physical topology Gp = (Vp,Ep) and logical topol-
ogy G = (VL. EL)
Output: A survivable augmented logical topology and its
routing
1: Sort all nodes in V;, by their degrees
2: Find datum node A € V; with the largest degree
3: MG =0.G;, =G,
4: while Jv e G}, with degree >2 do
5:  Sort all v by the cost C,
(v's physical degree)
6: Select node v' with the largest C,, v' € V,
7:  Find v”’s two adjacent nodes vy and v3 with the largest
C, and Cy
8: Map ', vz) and (v',vs) into disjoint paths and up-
date Mg,
9. G, =G, \w)
10: end while
11: whiledv € G,
ec€ k) do
12: Add a parallel edge ¢’ to e and find disjoint routings
for e and ¢’ in Gp
13:  Update the routings in Mg,
14: G, = G \le}
15: end while
16: while 3 isolated node v € G}, do
17: Add two edges connecting v and A and find two dis-
joint routings for the two edges.
18: Update the routings in M, G,
19: Remove v from G},
20: end while

= (U's logical degree) x

with degree =1 (individual edge

The heuristic first sorts all logical nodes by their de-
grees, and a datum node with the maximum degree is as-
signed and denoted as A. While there exists a logical node v
with degree >2, the heuristic assigns each logical node v
with degree >2 a cost C, = (degree of logical node) x
(degree of correspondingphysical node). The heuristic
then selects the logical node with the largest C, and choo-
ses two of v’s adjacent nodes vy and vy with the largest C,,
and C,,. (v.vq) and (v,vy) are then mapped into disjoint
paths in the physical topology. After that, v is removed from
the logical topology. This procedure is repeated until no log-
ical nodes with degree >2 are left. Next, the heuristic picks
a node v from the remaining logical topology with
degree = 1, i.e., an edge (u,v). An edge (u,v)' parallel to
(u,v) is then added, and disjoint mappings for (u,v) and
(u,v)" in the physical topology are found. This procedure
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is executed until the elimination of all logical nodes with
degree = 1. After the previous steps, if there exist nodes
v with degree = 0, two parallel edges connecting v and A
are added and they are mapped disjointly in the physical
topology. The heuristic is provided in Algorithm 1. Proof of
the correctness of Algorithm 1 may be found in [4].

Regarding the computational complexity, the complexity
of finding a pair of link-edge disjoint paths dominates the
time required, which is O(m3/2). So, the overall complexity
is O(nm3/?).

B. Heuristics for Maximizing Logical Capacity

We present a heuristic for maximizing logical capacity in
Algorithm 2. To guarantee survivability, the heuristic
would still augment the logical topology with additional
links. Steps 1-6 are the same as those in Algorithm 1.
After selecting the candidate node C, with degree >2
and the largest C,, instead of mapping its adjacent nodes
vy and vy with the largest C,, and C,,, the C,,’s are included
in a priority list. The heuristic selects two nodes at a time
with the highest C,, (in descending order), finds their dis-
joint mappings, and determines the minimal capacity of
the routing. Among all the routings generated, the one that
maximizes the minimal capacity is selected. This pro-
cedure is repeated until no logical node with degree >2
is left.

After a survivable routing is generated, to determine
the maximal logical capacity, we first push the flow for
all logical demands. This step is done by repeatedly push-
ing the unit flow for each logical demand until the physical
capacity cannot carry more logical demands. Here the
physical edge capacity of an edge would be updated if
the unit flow is routed through this edge. After the above
step, the maximum flow is pushed for every logical
node pair.

Algorithm 2 Survivability and Maximizing Logical
Topology Capacity

Input: Physical topology Gp = (Vp,Lp), logical topol-

ogy G = (V,,Ep)

Output: A logical routing with the maximum capacity

1: Sort all nodes in V;, by their degrees

2: Find datum node A € V;, with the largest degree

3 Mg =@,G, =G,

4: while Fv € G}, with degree >2 do

5:  Sort all v by the cost C, = (v's logical degree) x

(v's physical degree)

6: Select node v’ with the largest C,, v' € V,

7:  Sort v' adjacent node v; by Cy

8: for Each v"”s adjacent node palir v}, vy from sorted Cy,
list (in descending order) do '

9: Map (v',v}), (v, vy) disjointly and decide the mini-
mum capacity physical link on the lightpath

10: Record the sum of minimum capacities of the two
lightpaths

11: end for
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12:  Select the node pairs v}, v, with the largest sum of
minimum capacities and update M, G, with lightpaths
of (V',v)), (V',v})

13: G, =G \{V}

14: end while

15: while dJv € G; with degree =1 (individual edge

ec€ k) do

16: Add a parallel edge ¢’ to e and find disjoint routings
for e and ¢’ in Gp

17: Update the routings in M, G,

18: G}, =G \{e}

19: end while

20: while 3 isolated node v € G}, do

21: Add two edges connecting v and A and find two dis-
joint routings for the two edges.

22:  Update the routings in Mg,

23: Remove v from G},

24: end while

25: while 3 unsatisfied logical demand of u € E;, and

residual physical capacity supporting the demand do

26: Push unit demand between edge nodes of u through
u’s routing

27: Update physical link capacity

28: end while

29: for all v, w € Vi, v #w do

30: Push the maximum flow between (v, w)

31: end for

32: Return the maximum flow among all v, w € V,

The complexity is dominated by step 9 in Algorithm 2. At
most n? pairs of adjacent nodes are picked, and for each
pair edge-disjoint paths are to be found. This requires
O(n?m?3/?) time. Since this is done for each node, the overall
complexity is O(n®m3/2).

The complexity of Algorithms 1 and 2 is highly
conservative as can be seen from the simulation results.

C. Heuristics for Maximizing the After-Failure
Connectivity and the MCLC

The heuristics in Algorithms 3 and 4 start with a span-
ning tree ¢, and map their links into paths using a shortest
path algorithm. At the end of this step all the physical
edges that were not used in this mapping of the links in
the tree are stored in a set CB(¢).

Here a block refers to the set of cotree edges with respect
to spanning tree edges. We have to make an effort so that
blocks are not disjoint. We want them to overlap as much as
possible so that an edge appears in more than one block.
If this could be done, then after a physical link failure sev-
eral trees will remain connected increasing the connectiv-
ity of the logical network after a failure. W is a large
number.

Algorithm 3. Maximizing After-Failure Connectivity.

After finding mappings of all links in a tree ¢; the set
CB(t;) is created. All the edges in CB(¢;) are assigned a
large W to discourage their selection for the mappings in
the subsequent tree. This is to ensure that CB blocks for
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two subsequent trees overlap as much as possible. This will
guarantee that after the failure of an edge that is in two
consecutive CB’s at least two trees will remain, resulting
in increased after-failure connectivity.

Algorithm 4. Maximizing MCLC Value.

In this heuristic all the edges that are used in the map-
ping of a logical link in a tree ¢; are assigned a large weight
so that these edges are discouraged from entering the CB
for ¢;. This is to create as large a CB(t;) as possible. A larger
CB means that multiple failures of the edges in CB will not
disconnect the tree ¢;, thereby increasing the MCLC value.

Algorithm 3 Heuristic: Maximizing the Connectivity After
a Single Physical Link Failure

Input: GP = (VP’EP)a GL = (VLvEL), 7= D, EM[u] = O,
Vu€ekEr,,we)=1,VeecEp, 7, =0,1=0, W.

1: while 7 # E; do

2: Generate 7;, such that AdEM[v] = @, v e 1;
3: CB(z;) = Ep

4 for v € 7; do

5: if EM[v] # @ then

6: for all 2 € EM[v] do

7: CB(r;) = CB(1;)\k

8 wk) =1

9: end for

10: end if

11: end for

122 7T=TUn
13: for allv er; do
14: if EM[v] = @ then

15: Generate p’, EM[v] = p¥
16: for all 2 € EM[v] do
17: CB(r;) = CB(1;)\k

18: end for

19: end if

20: end for

21: for all 2 € Ep do
22: if £ € CB(z;) then

23: wk) =wk) +W
24 else

25: wk) =1

26: end if

27:  end for

28: i=i+1

29: end while

30: if Ep #| ) EM[u], V u € E;, then
31: AUGMENTATION

32: end if

Algorithm 4 Heuristic: Maximizing the MCLC
Input: Gp = (VP»EP), GL = (VL,EL), T = D, E'M[u] =0,
VueE,,we)=1,VeeEp, 1;,=0,1=0, §.
1: while 7 # E; do
Generate 7;, where AEM[v] = @, v € 7;
CB(z;) = Ep
for v € 7; do
if EM[v] # @ then
for all £ € EM[v] do
CB(z;) = CB(z;)\k

»
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8: end for
9: end if
10: for all & € Ep do
11: if £ € CB(z;) then
12: wk) =wk) +W
13: else
14: wk) =1
15: end if
16: end for
17: end for

18: T=T U T;
19: for allv er; do
20: if EM[v] = @ then

21: Generate p¥, EM[v] = p*
22: for all k£ € EM[v] do
23: CB(z;) = CB(1;)\k

24: end for

25: for all £ € Ep do

26: if £ € CB(r;) then
27: wk) =wk)+W
28: else

29: wk) =1

30: end if

31: end for

32: end if

33: end for

34: i=i+1

35: end while

36: if Ep #| ] EM[u], V u € E;, then
37: AUGMENTATION

38: end if

VII. CoMPUTATIONAL RESULTS

In this section, we report our computational results
evaluating the effectiveness and performance of our exact
solution approaches (MILP formulations) and heuristics
for 1) minimizing logical topology augmentation for weak
survivability, 2) survivable routing for maximizing the log-
ical topology capacity, 3) survivable routing for maximizing
the connectivity after a single physical link failure, and
4) maximizing the minimal cross-layer cutset.

A. Experimental Setup

The testing cases for both exact solution approaches
(MILP formulations) and heuristic algorithms are as fol-
lows. We adopted the networks introduced in [38,39] as
physical topologies. They are DFN, EURO1 (E1), EURO2
(E2), G3, G6, and NSF, as shown in Figs. 2-7. Two groups
of logical topologies are constructed: a) 2-connected planar
graphs and b) the more sparse networks, Delaunay tri-
angulation, and spanning tree, denoted as “2CON,”
“DELA,” and “TREE,” respectively.

DELA and TREE are used to test the topology augmen-
tation MILP and the heuristic. Two-connected planar
graphs are used to test all metrics. Note here that links
are randomly removed from 2-connected and Delaunay
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Fig. 6. G6.

triangulation logical topologies to generate the tested log-
ical networks. For all constructed logical topologies, the log-
ical topologies’ nodes are subsets of physical nodes; that is,
[Vl =10.5%|Vp|| and [0.7 % [Vp|]. We let r; p denote the
“logical to physical node ratio.” We used r,p = 0.5 or 0.7.
Detailed information for physical and logical topologies is

Fig. 4. EURO 2. Fig. 7. NSF.



550 J. OPT. COMMUN. NETW./VOL. 7, NO. 6/JUNE 2015

TABLE II
PrysicaL ToroLoGY INFORMATION

PhyG Nodes Edges MinDeg MaxDeg AvgDeg
DFN 11 47 2 10 8.55
E1l 11 26 4 6 4.73
E2 18 39 2 7 4.33
G3 12 25 2 7 4.17
G6 17 31 2 5 3.65
NSF 14 21 2 4 3

listed in Tables II and III. In all tested cases, capacities and
demands assigned to physical and logical links are ran-
domly generated following uniform distributions in [1,10]
and [1,100], respectively. We run 10 cases for each tested
scenario and report the average performance of these
10 cases.

We used CPLEX 12 .4 to run the MILP formulations on a
machine with a quad-core (with hyper-threading) Intel
Core i17-3770K processor and 16 GB memory. We assigned

TABLE III
LoacicaL ToroLoGY INFORMATION

PhyG LogG rppp Vp Ep MinDeg MaxDeg AvgDeg
DFN 2CON 05 6 7 2 4 2.33
0.7 8 10 2 4 2.5
DELA 0.5 6 47 5 31 15.67
0.7 8 47 10 13 11.75
TREE 0.5 6 5 1 2 1.67
0.7 8 7 1 3 1.75
E1 2CON 0.5 6 7 2 4 2.33
0.7 8 10 2 6 2.5
DELA 0.5 6 26 5 12 8.67
0.7 8 26 5 9 6.5
TREE 0.5 6 5 1 3 1.67
0.7 8 7 1 3 1.75
E2 2CON 0.5 9 11 2 4 2.44
0.7 13 15 2 4 2.31
DELA 0.5 9 39 7 11 8.67
0.7 13 39 3 9 6
TREE 0.5 9 8 1 3 1.78
0.7 13 12 1 3 1.85
G3 2CON 0.5 6 7 2 4 2.33
0.7 8 8 2 2 2
DELA 0.5 6 25 5 11 8.33
0.7 8 25 5 8 6.25
TREE 0.5 6 5 1 2 1.67
0.7 8 7 1 3 1.75
G6 2CON 0.5 9 9 2 2 2
07 12 14 2 4 2.33
DELA 0.5 9 31 3 10 6.89
0.7 12 31 3 7 5.17
TREE 0.5 9 8 1 2 1.78
0.7 12 11 1 2 1.83
NSF 2CON 05 7 8 2 4 2.29
0.7 10 10 2 2 2
DELA 0.5 7 21 5 7 6
0.7 10 21 3 8 4.2
TREE 0.5 7 6 1 2 1.71
0.7 10 9 1 3 1.8
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four threads to solve each MILP problem and limited the
maximum execution time to 30 min. The heuristics were
implemented using the LEMON library [40], which ran
in a single thread during execution.

B. Experimental Results

First, we present the results for the minimizing logical
network augmentation. Note that logical network augmen-
tation is triggered only when a cross-layer survivable route
cannot be generated. We consider DELA and TREE as log-
ical networks, which are less dense than 2CON. The perfor-
mance results for the MILP formulation and the
heuristic for minimizing logical network augmentation
for weak survivability are presented in Table IV. We let
“PhyG,” “LogG,” “ryp,” “AugEdge,” and “Time” represent
the tested physical network, the logical network, the ratio
of the number of logical nodes over that of physical nodes,
the number of augmented logical edges, and the computa-
tional time (in seconds). In all cases, the WSR-MLA
formulation does not augment the logical network. The
computational time of the heuristic is much less than that
in the MILP approach. We note that for the same physical
network, the denser the logical graph (as measured by the
ratio m/n?), the lower the number of edges required
for augmentation. This is because a denser graph can
afford to tolerate more link failures before it becomes

TABLE IV
REsuLts FOR MINIMIZING AUGMENTED LoGICAL EDGES FOR
WEAK SURVIVABILITY

MILP Heuristics

PhyG LogG ryp AugEdge Time (s) AugEdge Time (s)
DFN DELA 0.5 0 0.0696 1 4E-04
0.7 0 0.0965 0.5 6E-04

TREE 0.5 2 0.2474 6 3E-04

0.7 2.8 2.9485 6 4E-04

E1 DELA 05 0 0.0535 0.9 3E-04
0.7 0 0.0741 0.8 4E-04

TREE 0.5 2 0.1341 4.2 2E-04

0.7 2 0.4021 3.8 3E-04

E2 DELA 0.5 0 0.3593 0.7 6E-04
0.7 0 0.5092 1.3 8E-04

TREE 0.5 2 1.5197 5.3 4E-04

0.7 3 5.8057 8.5 6E-04

G3 DELA 0.5 0 0.0738 0.9 3E-04
0.7 0 0.0934 0.6 4E-04

TREE 0.5 14 0.1687 5 2E-04

0.7 2 0.4438 6.3 3E-04

G6 DELA 0.5 0 0.2942 0.6 6E-04
0.7 0 0.3771 14 7TE-04

TREE 0.5 2 1.4556 7.1 4E-04

0.7 2.2 27.7924 7.1 5E-04

NSF DELA 0.5 0 0.1293 0.4 3E-04
0.7 0 0.1750 0.8 5E-04

TREE 0.5 2 0.3120 5.6 3E-04

0.7 2.5 13.0718 7.2 4E-04
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TABLE V
ComPuTATION RESULTS WiTH 2-CONNECTED PLANAR LoGIcAL ToPOLOGIES AND LocicaL To PrHysicaL Nopke Ratio = 0.5
MinAug MaxCapa MaxConn MaxMCLC
MILP Heuristic MILP Heuristic MILP Heuristic MILP Heuristic
PhyG Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time
DFN 0.0 0.078 3.0 3E-04 35 2.727 1.3 6E-04 2 0.127 1 0.003 2 3.043 1 0.003
E1 0.0 0.077 4.2 2E-04 2.7 0984 1.2 5E-04 2 0.083 1 0.002 2 0.831 1 0.002
E2 0.0 1.182 4.1 4E-04 3.3 6.184 1.3 0.001 2 0.299 1 0.003 2 9.268 1 0.003
G3 0.0 0.097 2.2 2E-04 5.3 0.967 1.3 5E-04 2 0.104 1 0.002 2 1.681 1 0.002
G6 0.2 1244 3.8 4E-04 3.6 5274 1.1 9E-04 1 0.348 1 0.003 2 71.62 1 0.003
NSF 0.3 0314 3.6 2E-04 3.0 1.149 0.8 TE-04 2 0.127 1 0.002 2 1.177 1 0.002
TABLE VI
CompuTaTION RESULTS WiTH 2-CONNECTED PLANAR LoagIcAL ToPOLOGIES AND LocicaL To PraysicaL NopE Ratio = 0.7
MinAug MaxCapa MaxConn MaxMCLC
MILP Heuristic MILP Heuristic MILP Heuristic MILP Heuristic
PhyG Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time Obj Time
DFN 0.0 0.14 36 3E-04 35 4.325 1.2 8E-04 2 0.213 1 0.003 2 6.802 1 0.003
E1 0.0 0282 22 3E-04 40 2184 1.3 6E-04 2 0.15 1 0.002 2 3.206 1 0.003
E2 0.1 185 47 6E-04 23 33.56 1.0 0.001 2 4.024 1 0.004 2 613.6 1 0.004
G3 00 0.143 6.4 3E-04 3.7 1.247 1.4 T7TE-04 2 0.19 1 0.002 2 16.76 1 0.002
G6 0.7 8.48 59 b5E-04 33 153 0.8 0.001 1 0.398 1 0.004 1 11.66 1 0.004
NSF 09 6.423 6.4 4E-04 4.0 3449 09 8E-04 2 0.257 1 0.002 XX XX 1 0.003

disconnected. This can be seen from the simulation results.
In fact, DELA, which is denser than TREE, requires no
augmentation at all.

Next, we present the performance of the MILPs and heu-
ristics for all four cross-layer evaluation metrics with
2CON (with logical physical node ratio, 0.5 and 0.7) as log-
ical topologies. Computational results are reported in
Tables V and VI. For all testing cases, heuristic algorithms
ran significantly faster than exact solution approaches
(MILP formulations). For all evaluation metrics except
augmentation, we report the average computational time
of MILPs that do not require logical augmentation. As
we can see, the heuristics are much faster than the
MILPs. In general the computational times increase as
the difficulty increases in the order “MinAug,” “MaxCon,”
and “MaxMCLC.” Also, to achieve feasible solutions for
these four evaluation metrics, the realization of feasible
solutions becomes harder and harder.

VIII. SumMAaRY AND CONCLUSIONS

In this paper we have presented a comprehensive treat-
ment of mathematical programming frameworks for the
survivable logical topology routing problem in capacitated
cross-layer optical networks under multiple cross-layer
evaluation metrics. We have enhanced the survivability
routing formulation WSR-MD given in Section III by devel-
oping MILP formulations for 1) minimum logical topology
augmentation for guaranteed weakly survivable routing,
2) maximizing the after-failure connectivity of the logical

topology, 3) maximizing the capacity of the logical topology,
and 4) maximizing the MCLC. An interesting feature of our
MILP formulations is that the optimization is carried out
in a single stage, in contrast to previous approaches that
consider logical subgraphs obtained after each physical
link failure. For example, see [7]. The contributions re-
ported in this paper assume considerable significance in
view of the increasing interest in network virtualization
and topology abstraction incorporating survivability re-
quirements [41,42].
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