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Abstract—The survivable logical topology routing prob-
lem in an IP-over-WDM optical network is to map each link
(u,v) in the logical topology (at the IP layer) into a lightpath
between the nodes z and v in the physical topology (at the
optical layer) such that failure of a physical link does not
cause the logical topology to become disconnected. It is
assumed that both the physical and logical topologies are
at least two-edge connected. For this problem, two lines
of investigation have been pursued in the literature: one
pioneered by Modiano and Narula-Tam [Proc. IEEE INFO-
COM, 2001, p. 348] and the other pioneered by Kurant and
Thiran [Proc. Int. Conf. on Broadband Networks (BROAD-
NETS), 2004, p. 44]. Since then there has been a great deal of
research on this problem. Most of the works have not con-
sidered limitations imposed on the routings by physical
capacity limits and other metrics in addition to survivabil-
ity. In this paper, we first introduce two concepts: weakly
survivable routing and strongly survivable routing. We
then provide mathematical programming formulations
for two problems. The first problem is to design a surviv-
able lightpath routing that maximizes the logical demand
satisfaction before and after a physical link failure. The
second problem is to add spare capacities to the physical
links to guarantee routability of all logical link demands
before and after a physical link failure. We conclude with
heuristics that mitigate the computational complexity of
the mathematical programming formulations and with
simulation results comparing these heuristics with the
mathematical programming formulations.

Index Terms—IP-over-WDM; Logical topology routing;
Mathematical programming; Survivability.

I. INTRODUCTION

N etwork survivability is among the most recurring is-
sues when designing telecommunication networks.
When a network facility (link or node) fails, a mechanism
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which guarantees continued network flow and operability
is critical. Over the last decade there has been an
explosive growth in Internet traffic requiring a high trans-
port capacity of telecommunication networks. While the
utilization of wavelength-division multiplexing (WDM) ex-
tends the capacity of optical fibers [1], optical fiber failures
lead to disruptions in traffic and severe consequences.
Ramamurthy et al. [2] summarized the protection and re-
storation mechanisms on WDM networks and examined
the routing and wavelength assignment problems. With
the development of optical cross-connect (OXC) and optical
add—drop multiplexer, WDM is mostly deployed in a point-
to-point manner and supports multilayered architectures
such as Internet Protocol/Multiprotocol Label Switching
(IP/MPLS), Asynchronous Transfer Mode (ATM), and Syn-
chronous Optical Networking/Synchronous Digital Hier-
archy (SONET/SDH) [3].

An IP-over-WDM network is a two-layered network
where an IP (logical) network is embedded onto a WDM
(physical) network. IP routers and OXCs correspond to
the logical and physical nodes. Links connecting the nodes
in a logical network are called the logical links, and the
physical links are realized via optical fibers. The logical
nodes are commonly assumed to have corresponding nodes
in the physical network. On the other hand, not all physical
nodes may exist in the logical network. A router-to-router
link is implemented through a wavelength on a path
between two end nodes in a WDM network bypassing
opto—electro—optic conversions on intermediate nodes in
the path. This path is called a lightpath. Each optical fiber
may carry multiple lightpaths; hence a failure on an optical
fiber may have a cascading effect causing failures on multi-
ple logical links, resulting in a huge amount of data traffic
(terabits/s) loss. This has given rise to extensive interest in
the study of survivability issues in the IP-over-WDM net-
work. In this paper, the terms “mapping” and “routing” will
be used interchangeably.

Examples of a survivable mapping and an unsurvivable
mapping of the links of a logical topology [Fig. 1(a)] onto the
links of a physical topology are shown in Fig. 1. In the map-
ping of Fig. 1(c), when physical link (4,5) fails, logical links
(2,4) and (4,6), whose lightpaths are both routed through
physical link (4,5), fail simultaneously, causing the logical
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Fig. 1. Unsurvivable and survivable mappings for logical
topology.
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topology to become disconnected since logical node 4 is no
longer connected to other nodes in the logical topology after
this physical link failure. In contrast, in Fig. 1(d) no physical
link failure can disconnect the logical topology; hence the
mapping is survivable. Therefore, survivability of a map-
ping can be guaranteed if the lightpaths in the physical top-
ology corresponding to this mapping are all link-disjoint.

Most previous research concentrated on survivable
design of uncapacitated IP-over-WDM networks, while in
practice physical link capacities and logical link demands
are usually considered during the design phase. In the rest
of this paper, we consider survivable logical topology design
in IP-over-WDM networks with capacity and demand
constraints on physical and logical links, respectively.
For uncapacitated IP-over-WDM networks, survivability
is achieved if the logical network remains connected after
any physical link failure. In such a case, since the logical
network will be connected after a physical link failure,
the existence of alternative lightpaths for the failed logical
links is guaranteed. However, if the physical link capacity
is taken into consideration, demands on logical links may
not be satisfied after physical link failure(s) even if the log-
ical network remains connected. Thus, the original defini-
tion of survivability in uncapacitated IP-over-WDM
networks does not apply to capacitated networks. In order
to satisfy demands on logical links we need to add spare
capacity to each physical link, which is the extra capacity
required to carry the disrupted traffic. Figures 2(a) and 2(b)
show a logical network with demands on its links and a
physical network with capacities on its links. A survivable
routing satisfying both logical link demands and guaran-
teeing logical graph survivability after a single physical
link failure is shown in Fig. 2(c). The mapping in Fig. 2(d)
is survivable while (a,c) demand cannot be satisfied under
the failure of physical link (b,c). An example of unsurviv-
able mapping satisfying all initial demands is given in
Fig. 2(e).

The contributions of this paper are as follows: 1) this pa-
per first provides definitions and problems of survivable
routing in IP-over-WDM networks with physical link
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(e) Unsurvivable but initial demands are satisfied

Fig. 2. Capacitated survivability and demand satisfaction
against single failure.

capacity and logical link demand; 2) mixed integer linear
program (MILP) formulations and heuristic algorithms
are developed to solve the problems effectively; and
3) the models and formulations introduced in this paper
provide a framework, which can be generalized or extended
to formulations for logical topology augmentation for guar-
anteed survivability, survivability against multiple physi-
cal link failures, maximizing minimum cross-layer cut
(MCLC), maximizing after-failure connectivity of the logi-
cal topology, maximizing logical capacity, and load balanc-
ing and energy-minimized survivable routing.

The rest of the paper is organized as follows. Section II
provides a review of literature in the related areas. Formal
definitions of weak and strong survivability and notations
are presented in Section III. Section IV provides MILP for-
mulation of the weak survivability problem with the objec-
tive of maximizing the total demand satisfaction under a
survivable routing. We propose single-stage and two-stage
formulations to achieve the objective by rerouting at the
physical layer.

In Section V, a two-stage formulation for strongly surviv-
able routing under minimum spare capacity requirements
is developed. To mitigate the computational complexity of
the mathematical programming formulations, we provide
heuristics in Section VI for weakly survivable and strongly
survivable routing problems. Preliminary simulation re-
sults comparing these heuristics with the mathematical
programming formulations are also given in Section VI.

This paper is an expanded version of our previous
work [4].

II. RELATED WORK

As we noted in the previous section, survivability of
a logical topology mapping can be guaranteed if the
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lightpaths in the physical topology corresponding to this
mapping are all link-disjoint. Since finding mutually dis-
joint paths between multiple pairs of nodes is NP-complete
[5], survivable design of the logical topology in an IP-over-
WDM network is also an NP-complete problem. Modiano
and Narula-Tam [6] proved a necessary and sufficient con-
dition for survivable routing under a single physical link
failure in IP-over-WDM networks and formulated the prob-
lem as an integer linear program (ILP). Todimala and
Ramamurthy [7] adapted the concept of a shared risk link
group introduced in [8] and also computed the routing
through an ILP formulation. Extensions of the work in [6]
are given in [9,10]. Reference [9] introduced certain connec-
tivity metrics for layered networks and provided ILP for-
mulations for the lightpath routing problem satisfying
these metrics. In particular, they provided approximation
heuristics for lightpath routing maximizing the MCLC
metric. Kan et al. [10] discussed the relationship between
survivable lightpath routing and spare capacity require-
ments on the logical links to satisfy the original traffic
demands after failures. A common drawback of ILP ap-
proaches is that they are not scalable as the network size
increases. Hence, heuristic approaches that provide ap-
proximations to the optimal solutions have been considered
in the literature.

To handle the drawback of ILP approaches, Kurant and
Thiran [11] proposed the survivable mapping by ring trim-
ming (SMART) framework, which first attempts to find
link-disjoint mappings for the links of a subgraph (instead
of all the links in the original graph) of the given logical
graph. Another approach proposed by Lee et al. [12] uti-
lized the concept of ear-decomposition on biconnected
topologies. One can show that this is, in fact, a special vari-
ant of the framework given in [11], though it was developed
independently. Javed and co-workers obtained improved
heuristics based on SMART [13,14]. Using duality theory
in graphs, a generalized theory of logical topology surviv-
ability was given by Thulasiraman and co-workers [15,16].
Thulasiraman etz al. [17] considered the problem of aug-
menting the logical graph with additional links to guaran-
tee the existence of a survivable mapping. It has been
shown in [17] that if the physical network is three-edge
connected, an augmentation of the logical topology that
is guaranteed to be survivable is always possible. An ear-
lier work that discussed augmentation is [18].

There has been a great deal of research on the single
layer network survivability problem, in particular assign-
ment of spare capacities on the physical links to guarantee
the required network flows after link failures. Some recent
works in this area are [19,20]. Some of the other works that
studied the spare capacity assignment problem under sur-
vivability requirements are [21,22].

All of these works do not consider the notion of surviv-
ability of the logical layer that is critical in IP-over-WDM
networks. References [23,24] studied the survivable optical
virtual private network (VPN) problems. Reference [23] in-
troduced approaches for resource allocation with static de-
mands in survivable optical networks supporting VPN.
Reference [24] defined the resilient VPN design problem
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minimizing the number of lightpaths required in a VPN.
Both of them did not consider adding spare capacity and
imposed wavelength sharing constraints. As remarked
earlier, Kan et al. [10] discussed the relationship between
survivable lightpath routing and spare capacity require-
ments on the logical links to satisfy the original traffic de-
mands after failures. In contrast, in this paper we
investigate lightpath routing that maximizes the demand
satisfaction of the logical graph before and after a physical
link failure, as well as lightpath routing that minimizes
spare capacity requirements on the physical links that
guarantees strong survivability as defined in Section III.

III. PRoBLEM DESCRIPTION AND NOTATIONS

” «

We use the terms “network” and “topology,” “edge” and
“link,” and “node” and “vertex” interchangeably throughout
the paper. Let G; = (V,E;) be a logical network and
Gp = (Vp,Ep) be a physical network in an IP-over-WDM
network. Let (i,j) be a physical link and (s, #) be a logical
link. Capacity on physical link (i,j) is ¢;; and demand on
logical link (s, ¢?) is d;. We now define the survivability cri-
teria considered in this paper. We assume both the physical
and logical networks are at least two-edge connected.

Definition 1: An IP-over-WDM network with logical and
physical topologies Gy = (V;.Er) and Gp = (Vp.Ep) is
weakly survivable if, after any physical link failure, G,
remains connected.

Definition 2: An IP-over-WDM network with
G = (Vi.Ep), Gp = (Vp. Ep), capacity c;; for each physical
link (i,j), and demand d for each logical link (s,?) is
strongly survivable if, before and after any physical link
(i,j) failure, G;, remains connected and d,, can be satisfied
for all (s,t) € Ep.

Definition 3: The spare capacity on a physical link is the
extra capacity required to satisfy all dg before and after
any (i,j) failure while the logical topology remains con-
nected. Note: If the spare capacity requirement on each
physical link is zero after a physical link failure, then
the network is strongly survivable.

In this paper, we investigate the following two problems
and their extensions.

Problem 1: Determine lightpath routings, for all logical
demands, which guarantee weak survivability by rerouting
after any physical link (i,j) failure and maximize the sum
of satisfied logical demands before and after rerouting with
the limitation of physical link capacities.

Problem 2: Determine lightpath routings for logical
demands, which guarantee strong survivability under
minimum spare capacity requirements.

We first study Problem 1 as a single-stage problem in
Subsection IV.A. Due to the scalability and computational
complexity of the single-stage approach, we propose a two-
stage approach for Problems 1 and 2 and present the for-
mulations for the two-stage problems in Subsections IV.B
and V.
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IV. WEAKLY SURVIVABLE ROUTING/REROUTING AND
MaxmmuM LocicaL LINk DEMAND SATISFACTION

In this section we investigate Problem 1. There are two
aspects to the problem, namely, lightpath routing and
rerouting that guarantees weak survivability with maxi-
mum logical link demand satisfaction before and after
any physical link failure. We introduce variables and
parameters used in the formulation in Table I. Note
that (i,j), (k,¢) € Ep,(s,t) € E;,i,j,k, £ € Vp,s,t € V.

A. Single-Stage Solution Approach for Weakly
Survivable Routing

We now present a single-stage solution approach for Prob-
lem 1 through an MILP formulation, which consists of two
groups of constraints addressing weak survivability and de-
mand satisfaction before and after a physical link failure,
respectively. Group 1 contains constraints (1) to (10), which
1) generate lightpaths for logical demands, 2) guarantee the
same flow (i.e., satisfied demand) along a lightpath, 3) pre-
vent the flow from exceeding the demands and capacities,
and 4) ensure survivability against a physical link failure.
Under the failure of any physical link, constraints (11) to
(23) in Group 2 reroute the disconnected logical links utiliz-
ing residual capacities on each physical link and avoiding

TABLE 1

PARAMETERS AND VARIABLES UseD IN MILP FoRMULATIONS

Parameter Description

cij Capacity on physical link (z,j)

dg Demand on logical link (s, #)

M A very large number

Variable Description

yf} Binary variable indicates whether the logical link
(s,t) € Ey, is routed through the physical link
(i,J) € Ep by direction from i to j. If yes, yf]‘ =1
otherwise, 5 = 0.

ffj Flow on physical link (Z,j) due to lightpath (s, ?).

" Fractional variable for connectivity constraints.
r%, = 0 indicates that (s, ¢) is disconnected if (i, )
fails.

Pst The satisfied demand for the logical link (s, ).

lfjt Maximal rerouted demand of disconnected logical
link (s, ¢) after physical link (i,j) failure and
rerouting.

pfj’? Binary variable indicates whether logical link

(s, t) is routed through physical link (,j); if yes,
pfj’? = 1; otherwise, pf = 0.

X Rerouted flow on (k,7), which is for rerouting
disconnected logical link (s, ¢)’s demand after the
physical link (z,j) failure.

zi’fhj Binary variable indicates whether lightpath for
(s, t) is rerouted through (%, ¢) after (i,j) failure;
if yes, Zitt’ij = 1; otherwise, z§’,.. = 0.

ni‘ﬁj Fractional variable for rerouted flow through

(k,?) for disconnected (s, ¢) after (i,j) failure.
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the rerouted lightpaths from passing through the failed
physical link. Note that the residual capacities are deter-
mined by the original capacities subtracting the capacities
occupied by the working (undisrupted) lightpaths, which re-
strict the existence of a new lightpath routing. A logical link
representing a demand between logical nodes s and ¢ will be
denoted by (s,?) if s < ¢, and otherwise by (¢, s). First, we for-
mulate constraints in Group 1 as follows:

Lightpath constraints:

1, ifi=s,
Z yi- Z yii=1-1 ifi=t, i€Vp (s.t)€EL,
(@j)€Ep (.)EEp 07 lfl§£{s,t},
@D
yE+y¥ <1, (i.J) € Ep,(s,t) €EL, 2)
Z i+ <2, ieVp, (s,t)yeE,.  (3)

(@.)).GD€EEp

Flow conservation constraints:

pe, ifi=s,
Z ff]t_ Z fjltz —Pst> ifi=¢, iEVP,(S,t)EEL,
(ij)eEp (.i)€Ep 0, ifi# {S,t},
“4)
Pst < dsh (S, t) € EL- (5)
Bounded flow constraint:
ffj'? sMyfjt and fjf < My}?f, @i.j) €Ep,(s,t) €Er. (6)
Capacity constraint:
Y+ <cy () €Ep. @)

(st)EEL

Survivability constraints:

ij ij -1, ifs=uy, o
Z i - Z =1 " v1€Vy5.G.j) €Ep,
(s.t)EEL (t.s)eEy v s #U1,
(8)
0<r<1-(+y9.  (J)€Bp(s.t) €EL. (9
0<r)< 1- 05+ (i.j) €Ep.(s,t)y € Er. (10)

Next, we explain the purpose of each constraint.

Lightpath constraints (1) through (3): Constraint (1)
with binary variable yf]'? provides a lightpath routing for
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each logical link (s,¢) with single unit flow. Physical links
for which yf} are nonzero define the lightpath for the log-
ical link (s,£). Constraint (2) guarantees that a lightpath
is not routed through a physical link in its two directions.
Constraint (3) eliminates other loops by avoiding a light-
path to revisit the same node on the lightpath. Thus we
have the following:

Proposition 1: The lightpath constraints provide light-
paths for (s,#) € E; and eliminate cycles.

Flow conservation, bounded flow, and capacity con-
straints (4) through (7): Constraints (4) and (5) push a flow
of value p,; through the lightpath for logical link (s,¢?).
Bounded flow constraint (6) guarantees that each physical
link (i,j) carries flow only if the lightpath(s) is routed
through at least one direction of the physical link. Here
M is a very large number greater than the maximum link
capacity. Capacity constraint (7) requires that the total flow
of all the lightpaths carried by each physical link is no more
than the corresponding physical link capacity.

Survivability constraints (8) through (10): Based on the
lightpaths generated by constraints (1) through (3), after
physical link (i,j) failure, if yf]'? + yjsf =1, the lightpath
for logical link (s,¢) is disconnected; otherwise, the light-
path for (s, #) remains connected. If the lightpath for logical
link (s, t) is routed through (i,j), %, = 0; otherwise, r%, < 1.
Constraints (8) through (10) force a flow of unit value to be
pushed to node v;. The logical links with nonzero 7, (those
links that are not broken) define a connected subgraph of
Gy, after the physical link (z,j) failure. Therefore, if these
constraints have a solution for all physical and logical
links, then the selected routing is survivable. Thus the fol-
lowing proposition holds.

Proposition 2: The survivability constraints provide the
necessary and sufficient condition for survivable routing in
the IP-over-WDM network.

We wish to note that the survivability constraints (8)—
(10) were first employed in the paper by Deng et al. [25].

Now we study the problem of rerouting for disrupted log-
ical links after each physical link failure. After any physical
link (i,j) failure, demands on disconnected lightpaths
which are routed through (i,j) by constraints in Group 1
would be rerouted with new ligthpaths through physical
links with residual capacities. We formulate the con-
straints in Group 2 as follows:

Rerouting constraints:

Zst - Zst .
ktij ¢kij
(k.0)EEP\{(i))} (¢.R)EEP\{(i))}
pff if £ =s,
= {_p‘z‘;’ lfk:t, keVp,(S,t)eEL,(i,J)GEP,
0, ifk#{st},
(1D
2y 25, < L.
£y Ckij (12)

@i.)) € Ep.(k.0) € Ep\{(i.))}. (s.t) € EL.
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(z‘;etfu +zsftkzj) <2, keVp.(ij)€Ep,(s.t)€Ey,
(k.0).(¢ R)EEP\{(E)}

13)

2y 20y <Y5 i () EEp.(k.0) €EP\{(iy)}.(s.1) EEL,
(14)

pi 2y + i, (i.J) € Ep.(s.t) EEL. (15)

Rerouted flow conservation constraints:

xst - xst B
ktij ¢kij
(kO)EEP\{())} (£.R)EEP\{(J)}
/1*;'}, if kb =s,
= —xlff, if k=1, keVp,(i.j) €Ep.(s,t) €EEL,

0, ifk#Ist

(16)
Af} <dg, (s,t) €E;, (i,)) € Ep. an
Residual capacity constraints:
Y @y Ay Sce = D iy ).
(s,t)EE;, (s,t)EE;,
(@.)). (k. ¢) € Ep, (k.©) # (i.)). (18)
xi‘ﬁj < Mzztﬁj, xf}kij < Mzsf'}w
(s.t) €Ep. (i) € Ep,(k.0) € Ep\{(.)}.  (19)
Capacity reservation constraints:
My <M1= O+ D). (). (k. 0. (£.k) € Ep,
(k. 0). (¢. k) # (i.)). (s.?) € EL, (20)
Ty 2 i = M5 + ¥, @.)), (k. €), (¢, k) € Ep,
(k7f)5 (fak) 56 (ihj)’(s’ t) EEL’ (21)
Ml <Fil+ M@ + 5. G.)). k.0). (£.k) € Ep.
(kv f)a (fa k) 56 (l7J)3 (S’ t) € EL? (22)
My A58 X 2 0,25, € 0,1,
(s.t) €EEL.(i.)) € Ep. (k. 0) € Ep\{(i.))}- (23)

Combining the constraints in Groups 1 and 2 with an ob-
jective to maximize the sum of satisfied logical demands
based on routing and rerouting before and after any physi-
cal link failure, a single-stage approach for Problem 1 can
now be formulated as follows in Algorithm 1.
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Algorithm 1 Single-Stage Weakly Survivable Routing De-
sign Under Capacity Constraints (WSRD-CC-SS)

Objective: maximizing satisfied demands before and after
failure

max Y gt XX i

(s.t)eEy (s.t)EEL, (ij)EEp

s.t. Constraints (1) to (23)

Rerouting and rerouted flow conservation constraints
(11) through (17): Constraints (11) through (13) [(similar
to constraints (1) through (3)] provide new lightpaths for
logical links which are broken after (i,j) failure. Constraint
(14) restricts that the rerouted lightpath for logical link
(s,t) would only be generated if its original lightpath
has been routed through the failed physical link (i,j).
Constraint (15) guarantees that a rerouted lightpath is
generated only for logical link (s,#) whose lightpath is
routed through the failed physical link (i,j). Constraints
(16) and (17) [similar to constraints (4) and (5)] determine
the rerouted demand of logical link (s, ¢) after physical link
(i.j) failure and force the rerouted demand for (s,?) to be
bounded by the demand of logical link (s, ?).

Residual capacity constraints (18) and (19): Constraint (18)
ensures that demands on failed logical links can only be (par-
tially) satisfied by physical links with residual capacities. Con-
straint (19) [similar to constraint (6)] forces the rerouted flows
to be zero for all links that are not used by rerouted lightpaths.

Capacity reservation constraints (20) through (23):
Constraint (20) ensures that if the original lightpath of
(s, t) is routed through the failed physical link (z, ), the capac-
ity of physical link (%,7) consumed by the flow of original
(s, t)’s lightpath would be released and utilized by rerouted
lightpaths. Constraints (21) and (22) together preserve the
capacity of physical link (k,7) utilized by the demand of
(s, t)’s lightpath, which remains connected after physical link
(2,j) failure. Constraints (20) to (22) guarantee that nztﬁj =

fi, if ¥ = y% = 0; otherwise, ;12';1.1. = 0. Constraint (23) pro-
vides the feasible region for fractional and binary variables.

B. Two-Stage Approach for Weakly Survivable
Routing

The single-stage formulation presented in Subsec-
tion IV.A provides an overall solution which not only gen-
erates lightpath routings before and after any physical link
failure but also guarantees that the sum of satisfied de-
mands is maximal with the capacity constraints. However,
this approach suffers from a scalability issue where the
number of constraints and variables involved would in-
crease exponentially given larger logical and physical
topologies (demonstrated in Section VI). Hence, we propose
to solve the weakly survivable routing problem in two
stages to overcome this drawback.

Stage 1: Determine a lightpath routing that guarantees
weak survivability and maximizes the sum of logical
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demands satisfied by this routing (i.e., maximum logical
demand satisfaction) before a physical link failure.

Stage 2: Based on optimal results from Stage 1, after any
physical link (i,j) failure, determine a rerouting for each
disconnected logical link which avoids (i,j) and maximizes
the sum of logical demands utilizing the residual capacity.
Note that demands and routings of the logical links not af-
fected by (i,j) failure still occupy physical capacities along
their lightpaths.

We now present an MILP formulation (called the WSRD-
CC algorithm) of the first stage of Problem 1.

Algorithm 2 WSRD-CC (First Stage of Problem 1)

MILP formulation for the first stage of the weakly
survivable routing design
(Objective: maximizing total satisfied logical demand):

max Y pu

(s.t)eky

(24)

s.t. Constraints (1)—(10),
yi €10.14. 75 f5. ps 2 0.(s.t) € Er. (i.)j) € Ep

There are different ways to evaluate the largest satisfied
demand on logical links. For the first stage of Problem 1, we
aim to maximize the total satisfied demands in the logical
network in constraint (24).

With the WSRD-CC algorithm, we obtain the survivable
lightpath routing information yfjt and the corresponding
satisfied logical demand p},. Note that the constraint set
in the first-stage problem is the same as Group 1’s con-
straints in the single-stage formulation. We next consider
the second stage of Problem 1.

Once a physical link (z, j) fails, we need to reroute lightpaths
that were routed through link (i, ) to satisfy at least partially
the original demands on these lightpaths. With yff, we know
that if yfj‘ = 1, then the lightpath of logical link (s, ¢) is routed
through (i,). Thus, for a given (i,j), we only need to reroute
lightpaths of logical links that are in the set R; =
{(s,t):yff + yjsf =1,(s,t) € E;}. Therefore, in the second
stage, after any physical link (z,j) failure, the disrupted net-
work flow is rerouted through a new lightpath going through
physical links with residual capacities (the residual capacity
on physical links after any physical link failure). The existence
of a rerouted lightpath is restricted by the residual capacities.
We formulate the second-stage constraints as follows.

Rerouting constraints in the second stage problem:

Zfetfij_ Z Z?kij
(RO)EEP\{())} (£.R)EEP\{(i))}
1, ifk=s,
=1-1, ifk=t, keVp (s.H)€R;.(ij)€Ep. (25)
0, ifk+#{s.t),

2y + 2% < L(k.£) € Ep\{(i.))}. (s.1) € Ry. (i.j) € Ep,
(26)
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(z,mj )<2, keVp,(s,t) R}, (i) €EEp.

(k.2).(¢.R)EEP\{ (i)}

fklj
27

Residual capacity constraints in the second-stage problem:

D P + ),

(u.u)EEL\RU

Dy ah) < cpe -
(s.t)ER;;

(k,?) € Ep\{(i.))}, (i.)) € Ep, (28)
xkf’y = Mzkmj

xS Mzl (s.0) € Ry. (k. 0) € Ep\{(Q.))}. (i.J) € Ep,

Ckij>
(29)
A‘:'J‘, if k =s,
s D g = A k=t
(k.£)EEP\{(i)} (¢ R)EERP\{(i)} 0, ifk st}
k€ Vp.(s,t) € Ry, (i.j) € Ep, (30)
2 <dg.  (s.t) €Ry.(i.j) €Ep. (31)

Algorithm 3 Weakly Survivable Routing Design with
Maximum Logical Capacity (MAXCAP-WSRD) (Second
Stage of Problem 1)

MILP formulation for the weak survivability design
(Objective: maximizing logical demand satisfaction)

(32)

max Z Z /lf'jt

(iJ)EEp (sH)ER;;

s.t. Constraints (25)—(31)

M Ay > 0,258, € 10,1}, (s.0) € R,

@i.)) € Ep.(k.0) € Ep\{(i.))}-

ijs

(33)

The goal for algorithm MAXCAP-WSRD, the MILP for-
mulation of the second stage of Problem 1, is to maximize
the total fulfilled disrupted logical demands through re-
routed lightpaths after any physical link failure.

Rerouting constraints in the second stage problem
(25)—27): With R;; generated in WSRD-CC, constraints
(25) to (27) generate new lightpaths avoiding (i,j) for all
broken logical links.

Residual capacity and flow equivalence constraints
in the second-stage problem (28)—(31): Constraint (28)
restricts the total rerouted flow on physical link (,7) to
be within its residual capacity. With the optimal routings
from the first-stage problem, the residual capacity of
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physical link (&, £) is czr = . 0eE \RPuw Wis" +7,"). Here
the second term at the right-hand side of constraint (28) is
the total flow on link (%, #) due to all the flows contributed
by unbroken lightpaths after failure of (Z, ). Constraint (29)
[similar to constraint (6)] forces flows to be zero on all links
that are not in a rerouted lightpath. Constraints (30) and
(31) push a flow of value /18]’ on the selected lightpath for
logical link (s,t) after physical link (z,j) failure.

V. STrRONGLY SURVIVABLE LIGHTPATH ROUTING UNDER
MinmvuMm Prysical SPARE CAPACITY

In this section, we study the strongly survivable routing
problem by allocating the spare capacity to satisfy all logical
demands before and after physical link failure. There are two
aspects to the capacity allocation problem: 1) spare capacity
allocation on the logical links and 2) spare capacity allocation
on the physical links. Reference [26] studied protection at the
WDM layer, (i.e., set up a backup lightpath for every primary
lightpath and the corresponding maximum capacity alloca-
tion). Reference [10] studied spare capacity allocation on
the logical links. In the IP-over-WDM network, the main
capacity restriction is from physical links (i.e., the band-
widths on fibers.) Compared with spare capacity allocation
in the logical network, the spare capacity allocation in the
physical network reflects real insufficient capacity which re-
stricts demand satisfaction because the capacity on the log-
ical link is an estimation based on capacities on physical
links. We now investigate Problem 2, which requires satisfac-
tion of all logical demands before and after any physical
link failure with additional capacities added to some of the
physical links when necessary. Our objective is to minimize
the total spare capacity added. With the same concerns
on scalability and computational complexity issues of the
single-stage solution approach, we proceed toward the above
objective in two stages as follows.

Stage 1: We first determine the survivable routing that
satisfies all logical demands before any physical link fail-
ure. This may require adding spare capacities on physical
links. Our objective is to minimize the total spare capacity
requirement.

The MILP for the first stage of Problem 2 is the same as
the WSRD-CC algorithm except that we use d, instead of
ps: in Eq. (4) and rewrite Eq. (7) as

2

(s.t)eEy,

S48 <cy+n. (i) €Ep. (34)

Here 11}].1) is a newly introduced variable that represents the
spare capacity to be added to physical link (Z,j). We modify
the objective to minimize the total spare capacity:

: (1)
min 3 40,

(i))€Ep
Stage 2: With the information on optimal lightpath rout-
ing and required spare capacity obtained from Stage 1, we
determine the total spare capacity requirement to satisfy

(35)



Lin et al.

all logical demands after any physical link failure by solv-
ing the following MILP formulations.

First, we introduce two auxiliary variables ﬂZg and n}ff),
which represent spare capacity for a rerouted lightpath after
physical link (i,j) failure and the maximal spare capacity
added on an undisrupted physical link for rerouted light-
paths after any (i,j) failure. The objective of the second-
stage problem is to minimize the sum of spare capacities
allocated for rerouted lightpaths after any (i,j) failure.

Algorithm 4 MILP for Stage 2 of Strongly Survivable
Routing

. 2
min 3 i

(y)€Ep

s.t. Constraints (25) to (27),

Z st (Zkﬁ]

(s.)ERy
(i) EEp, (k,2) € Ep\{(i.))},

2

(s.)EEL\R;;

fklj)<ckf + ’7 St(ykf +y ) + rlkf’

(36)

@

ne >nl,.  (i.j) €Ep.(k.¢) €Ep\IG.))}.  (3T)

Constraint (36) guarantees that extra spare capacity ’7k .
could be allocated for rerouted lightpaths after physical
link (i,j) failure. The left-hand side represents the total
flow on physical link (%k,7#) due to rerouting of all logical
links in R;, and the term on the right-hand side is the
sum of residual and spare capacity available on (&, ¢) after
(i.j)’s failure. ;7( is then the maximum of all ;7” ’s due to all
physical link failures. Constraint (37) calibrates the maxi-
mal second-stage spare capacity on each physical link after
any physical link failure. Note that for each physical link
the sum of the spare capacity calculated in stage 1 and the
spare capacity calculated in stage 2 is the total spare capac-
ity to be added to the link.

We wish to note that the strongly survivable case can
also be solved in a single-stage formulation similar to
the weakly survivable case.

VI. HeurisTics AND EXPERIMENTAL EVALUATION

The MILP formulations presented in the previous sec-
tions require high execution times, though they give opti-
mal values. To mitigate the computational complexity of
these formulations, we present, in this section, heuristics
for Problem 1 of Section IV, namely, weakly survivable
routing maximizing total demand satisfaction, and Prob-
lem 2 of Section V for strongly survivable routing with min-
imum spare capacity requirements.
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A. Heuristics for Problem 1 of Section IV

Stage 1: This stage has two steps. In step 1 (lines 1-26), a
survivable routing for the given logical topology is generated
through augmentation with additional links, if necessary. The
lightpath corresponding to each link in the network is also
generated in this step. This procedure is summarized in
Algorithm 5. In step 2 (lines 27 and 28), flows are pushed along
the chosen lightpaths without violating the capacity limits of
the physical links. The goal is to achieve a feasible set of flows
for the lightpaths that achieve a high demand satisfaction
before a physical link failure. An outline of step 1, as described
in Algorithm 5, is as follows.

We pick a logical node with the maximum degree as the
datum node denoted as A. Then we pick any logical node v
with degree >2, map two of v’s adjacent edges into disjoint
paths in the physical topology, and remove v from the log-
ical topology. This procedure is repeated until no logical
node with degree >2 is left. Next, we pick a node v from
the remaining logical topology with degree = 1 [an edge
(u,v)], add a parallel edge (u,v)’ to (u,v), and then find dis-
joint mappings for (z,v) and (z,v)' in the physical topology.
Then we remove v from the logical topology. This procedure
is executed until all logical nodes with degree = 1 are elim-
inated. If after the previous steps there exist nodes v with
degree = 0, we add two parallel edges connecting v and A
and map them disjointly in the physical topology. During
the lightpath generation, a weighted function is applied
on physical links, which minimizes the overlapping among
all lightpaths. Proof of correctness of logical topology aug-
mentation can be found in [17].

In step 2, we sort the lightpaths by their length, and a
unit flow is pushed iteratively along the lightpath corre-
sponding to each logical link (s,#) € E;, until no more flow
can be further pushed on the lightpaths. Here the lightpath
with the shortest length would be chosen first. This process
will provide an initial set of flows for all logical links. Thus
at the end of the first stage we will have a logical topology
that has a survivable lightpath routing, while most likely
only partial demands would be satisfied. Though aug-
mented logical links do not have demands, they provide
the paths needed to keep the logical topology connected
after a physical link failure.

Algorithm 5 Stage I. Survivable Lightpath Generation by
Augmentation

Input: Physical topology Gp = (Vp,Ep), logical topol-
ogy Gr, = (V..Er), Gp and G, are at least two-edge
connected, lightpath routing M, , physical link weight
wlk), k € Ep

Output: A survivable augmented logical topology and
routing

1: Find datum node A € V;, with the largest degree

2: MGL =0, G; = GL

3: while there exists a node v € G} with degree >2 do

4: TFind the minimum weight disjoint lightpaths p¢, p¢
for two adjacent edges e,e’ of v in Gp

5:  Update the routing in Mg,

6: for each physical link & € p¢ Up® do
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7 wlk] = wik]+ 1

8: end for

9. G, =G\lv}

10: end while

11: while there exists a node v € G; with degree =1
(individual edge e € E;) do

12: Add a parallel edge ¢’ to e and find the minimum
weight disjoint routings for e and ¢’ in Gp

13: Update the routings in Mg,

14: for each physical link % € p° Up® do

15: wlk]=wk]+1

16: end for

17: G = Gp\{e}

18: end while
19: while there exists an isolated node v € G} do

20: Add two edges connecting v and A and find two
minimum weight disjoint routings for the two edges.

21: Update the routings in Mg,

22: for each physical link £ € p°Up¢ do

23: wlk] = wlk] + 1

24: end for

25:  Remove v from G,

26: end while

27: Sort p°,e € E, by length

28: Push unit flow for the demand of each e,e € Ep,
iteratively (demand with the shortest lightpath first)
until no further demand can be pushed.

Stage 2: In this stage we take down each physical link
(i.j) (representing the link failure) one at a time. Let R;;
be the set of disconnected logical links due to the failure
of physical link (z, 7). We then calculate the residual capacity
available on each physical link after the failure of (i, ). For
each logical link in R;; we find a new lightpath with the larg-
est residual capacity while avoiding the physical link (i, ). If
the logical demand can be satisfied by the new lightpath, the
demand is subtracted from the capacity of the links on the
lightpath, and this demand (s, t) is marked as fully satisfied
after failure. Otherwise, we calculate the largest possible de-
mand which can be satisfied, push that as flow on the light-
path, and subtract it from the capacity of physical links on
the lightpath. Every time, we calculate this new logical de-
mand and recalculate the residual capacities on the physical
links in the selected lightpath. These steps are summarized
in Algorithm 6.

Algorithm 6 Stage II. Find Maximal Demand Satisfaction

Input: Physical topology Gp = (Vp,Ep), logical topology
G = (V..Er), Gp and G are at least two-edge
connected

Output: 9,4, the total maximal demand satisfaction after
failure

1: 19d =0

2: Find residual physical link capacity on Gp for the current
lightpath routing

3: for each physical link e; € Ep do

4: Find logical links L, whose lightpaths are routed
through e,

5:  Return to the physical links capacities utilized by L,

6: for each logical link e, € Ly do
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7:  Find an alternative lightpath in Gp with the largest
residual capacity without going through e,

8: end for

9: Find the maximal demand satisfaction D,

10: 19d = ‘9d + Ds

11: end for

This process is repeated for all physical links. The sum of all
the logical demands satisfied is the total demand satisfaction.

The complexity of the heuristics is dominated by the al-
gorithm to find minimum weight disjoint lightpaths, which
has complexity O(|[Ep|log(v,|+z,)|Vel) [27,28]. To update
the flow iteratively for each unit of logical demand, it takes
O(EpIY_(s ek, dst)- Overall, the complexity for the heuristic

is max{O(|VL||Ep[logv,|+g,)| VP, OUEPIY s ner, dst)}-

B. Heuristics for Problem 2 of Section IV

Stage 1 of this problem is similar to stage 1 of Problem 1
except that the spare capacities are added to satisfy all
demands.

Stage 2 of Problem 2: In this stage we take down each
physical link (i,j) one at a time. Using the information
about the lightpaths generated in stage 1, we calculate
the residual capacities available on the physical links after
the failure of (Z,). For each failed logical link (s, ¢), we find a
new lightpath that avoids the physical link (7, j). We choose
the new lightpath which has the maximum residual capac-
ity and record the extra capacities required on the physical
links to satisfy d; if d; is larger than the residual capacity
on the chosen lightpath.

This process is repeated for each physical link. The maxi-
mum of the spare capacities required for a physical link at
the end of these steps is the spare capacity requirement for
this link to guarantee strongly survivable routing.

The complexity of the second-stage heuristic is similar to
the complexity of the first-stage heuristic.

C. Simulation Results

We now present the environment setting and simulation
results for both MILP formulations and heuristic
algorithms. First, we present our experimental design.
We selected two sets of topologies as the testing cases.
The first set of topologies contains networks introduced
in [29,30] as physical topologies, shown in Figs. 3-7. The
second set of topologies were randomly generated three-
edge connected physical topologies with 50, 60, and 70
nodes. Their corresponding logical topologies were chosen
to be three-edge connected topologies whose logical nodes
were subsets of physical nodes (|Vi| = [0.5%|Vp|]).
Tables II and III summarize the information about physi-
cal and logical topologies for Figs. 3-7. In all testing cases,
capacities and demands assigned to physical and logical
links were randomly generated following uniform distribu-
tions in [1,50] and [1,100], respectively.
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Fig. 5. Norway [30].

We used CPLEX 12.3 to run the weakly and strongly sur-
vivable MILP formulations on a machine with a quad-core
(with hyperthreading) AMD Opteron processor and 32 GB
memory. We assigned a single thread to solve each MILP
program and limited the total execution time to be 5 h. The
heuristics were implemented using the LEMON library
[27], which also utilized a single thread during execution.

Given physical and logical topologies, the scalability of
the single-stage and two-stage MILP formulations for
the weakly survivable routing problem are presented in
Table IV. Note that “WeaklySingleStage,” “WeaklyStagel,”
and “WeaklyStage2” denote the single-stage problem and
the first and second stages of the two-stage problem,
respectively, for weakly survivable routing. “Variable #”
and “Constraint #” represent the number of variables
and constraints of the MILP formulations.
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Fig. 7. PDH [30].

TABLE II
PrysicAL ToPOLOGIES INFORMATION

Nodes Edges MinDeg MaxDeg AvgDeg

G6 17 31 2 5 3.64

NOBEL-Germany 17 26 2 6 3.06

Norway 27 51 2 6 3.78

DFN 11 47 2 10 8.55

PDH 11 34 4 8 6.18
TABLE III

LoaicaL ToPoLOGIES INFORMATION

Nodes Edges MinDeg MaxDeg AvgDeg

G6 8 12 3 3 3.00
NOBEL-Germany 8 12 3 3 3.00
Norway 13 20 3 4 3.77
DFN 5 8 3 4 3.20
PDH 5 8 3 4 3.20
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TABLE IV
ScALABILITY OF MILP FORMULATIONS FOR WEAK SURVIVABILITY

Variable # Constraint #
WeaklySingleStage O(|Ey||Ep|?) O(IEp|(IEp| + |Vp])
WeaklyStagel O(IEL||Ep]) O(EL|(|Ep| + [Vp]) + |Ep||VE])
EL||Ep|?
WeaklyStage?2 O(EL|IEp|?) EL||Ep
T of + S Ry(1Bpl + V2D
(ij)€Ep

TABLE V
CoMPUTATIONAL TIME AND PERFORMANCE oF MILP
FoRMULATIONS FOR WEAK SURVIVABILITY
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TABLE VI
ScALABILITY OF MILP FORMULATIONS FOR STRONG
SURVIVABILITY
Variable # Constraint #
StrongStagel  O(|EL||Ep])  O(IEL|(|Ep| + |Vp| + |Ep||VP])
EL||Ep?
StrongStage2  O(|EL||Ep|?) \EL||Ep
Ol + X Ry(Ep|+|Vp))
(ij)eEp

TABLE VII
CoMPUTATIONAL TIME AND PERFORMANCE oF MILP
FORMULATIONS FOR STRONG SURVIVABILITY

WeaklySingleStage WeaklyStagel WeaklyStage2 StronglyStagel StronglyStage2
Time OptGap Time OptVal Time OptVal Time OptVal Time OptVal
G6 5h — 12.18 233 0.15 713 G6 12.3 12 17.7 119
NOBEL- 5h 0.12% 13.75 241 0.01 849 NOBEL- 13.9 61 22.1 411
Germany Germany
Norway 5h — 5h 10.75% 154.3 1464 Norway 5h 10.75% 3755 371
DFN 5h 13.51% 1.04 209 0.01 209 DFN 1.15 0 1.28 0
PDH 5h 2.49% 6.36 240 0.05 781 PDH 6.5 0 12.7 49
Table V demonstrates the performance of the single-
stage and two-stage problems for weakly survivable rout- TABLE VIII

ing by computational time (in seconds) and optimal value
and optimality gap. If no optimal solution is obtained
within the time limit (5 h), we report the optimality gap
from CPLEX. In Table V, “OptGap” and “OptVal” denote
the optimality gap and optimal objective value of MILP
formulations. For the single-stage approach for weakly sur-
vivable routing, no optimal solution could be obtained
within 5 h. The average optimality gap is 5.37% for our ex-
periments, but CPLEX could not report the optimality gap
for testing cases “Norway” and “G6.” According to the
experimental results, the number of constraints and
variables, connectivity of topologies, and node degrees to-
gether form the decision factors for the execution time.
By solving the first-stage problem, survivable routings
were generated for all testing cases, which fulfilled
90.85% of demands on average.

The strongly survivable routing problem could also be
solved with a single-stage formulation. However, after
comparing the number of constraints, variables, and com-
putation time of MILP formulations for single-stage and
two-stage approaches, we decided to proceed with the
two-stage approach for the strongly survivable routing
problem.

Table VI presents the scalability of the first-stage and
second-stage MILP formulations for the strongly surviv-
able routing problem, which is similar to the number
for corresponding formulations for weak survivability.
Table VII provides the computational time (in seconds)
and shows that the spare capacity required is about 0%—
4% of the total physical capacity before the failure of
any physical link. The after-failure spare capacity required
is about 9.5% of the total capacities on average.

CompaRrISON oF MILP anp Heuristic RESULTS ON DEMAND
SATISFACTION AFTER FAILURE (WEAKLY SURVIVABLE)

MILP Heuristic
Demand dGap Time dGap Time
G6 245 95.10% 12.33 78.13%  0.09
NOBEL- 302 79.80% 13.76 70.89%  0.04
Germany
Norway 387 79.33% 5+h  63.15% @ 2.12
DFN 209 100% 1.05 86.91%  0.17
PDH 240 100% 6.41 100% 0.10
TABLE IX

COMPARISON OF MINIMUM SPARE CAPACITY REQUIREMENT
CALcULATED BY MILP anp HEURISTICS
(STRONGLY SURVIVABLE)

MILP Heuristic

Capcity cGap Time cGap Time
G6 1989 10.15% 30.0 18.60% 0.38
NOBEL- 1526 17.30% 36.0 20.57% 0.90

Germany

Norway 3059 19.64% 5h 29.22% 1.68
DFN 2550 3.41% 2.43 4.07% 0.08
PDH 1930 0% 19.2 0 0.07

In Tables VIII and IX, “dGap” denotes the satisfied
demands over total demands for the weak survivability
problem, and “cGap” represents the spare capacity over to-
tal capacities for the strong survivability problem. If not
specified, the computational time is presented in seconds.
For the weakly survivable routing problem, after rerouting,
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Fig. 8. Comparison of demand satisfaction for weak survivability
(after failure).

the two-stage MILPs could satisfy 90.85% of total demands
on average; the heuristic algorithm could achieve 79.82%
on average. The average gap between the heuristic
algorithm and MILPs is 11.03%, but the computation time
of the heuristic algorithm is significantly less than the two-
stage MILP approach, especially when the size of the topol-
ogies is larger. For the strongly survivable routing problem,
MILPs and the heuristic algorithm achieve dGaps of 10.1%
and 14.49% on average, respectively. Average spare
capacities generated by heuristics are about 4.39% more
than those of MILPs. We also illustrate the comparison
for satisfied demands and added spare capacities in Figs. 8
and 9, respectively.

To further analyze the scalability issue in MILP, we
generated larger topologies (shown in Table X) and
compared the computation time (in seconds) between the
two-stage weakly survivable routing approach and
heuristics. While the two-stage MILPs requires 1 to more
than 5 h to generate the solution, the heuristic algorithms
could still efficiently solve the problem within a short time.

Our results in Tables V and VII-X and in Figs. 8 and 9
demonstrate that our heuristic algorithms can produce
solutions with reasonable gaps without enumerating all

3500
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2000 s

@ TotalCapa
u MILP
A Heuristic

1500 *

1000

500 .

] o .

0 — i "
DFN  PDH

G6  Germany Norway

Fig. 9. Comparison of total spare capacities for strong survivabil-
ity (after failure).
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TABLE X
ComPUTATIONAL RESULTS oF MILPs AND HEURISTICS FOR
LARGE S1zE PROBLEM

Physical Logical Time
Nodes Edges Nodes Edges MILPs Heuristic
L1 50 75 25 38 1869.7 11.88
L2 60 90 30 45 3074.7 20.28
L3 70 105 35 53 5h 36.25

possible lightpath routings for both weakly and strongly
survivable routing problems.

VII. SuMMARY AND CONCLUSIONS

In this paper we presented a comprehensive treatment
of mathematical programming frameworks for the surviv-
able logical topology routing problem in capacitated
IP-over-WDM optical networks. Under the assumption
that both physical and logical topologies are at least
two-edge connected and the after-failure rerouting is done
at the physical layer, we defined the concepts of weak and
strong survivability. We developed both single-stage and
two-stage MILP formulations for the weakly survivable
routing problem. A two-stage solution approach for
strongly survivable routing was also developed to deter-
mine a routing that minimizes spare capacity require-
ments before and after a physical link failure.

To mitigate the computational complexity of the MILP
formulations developed, we developed heuristics for both
weakly and strongly survivable routing problems and
presented simulation results comparing the performance
of these heuristics with respect to the performance of
the MILP formulations. It was observed that the computa-
tion time of the heuristics is much less than that for the
MILP approaches, while achieving a performance around
85% of the optimum.

While the formulations developed in this paper provide
much insight into the problems considered, they also pro-
vide the basis for extensions such as design of logical topol-
ogies that permit survivable routing satisfying multiple
cross-layer metrics: logical topology augmentation for
guaranteed survivability, survivability against multiple
physical link failures, maximizing MCLC, maximizing
after-failure connectivity of the logical topology, maximiz-
ing logical capacity, and load balancing and energy-
minimized survivable routing. Also, they provide the basis
for developing approximation algorithms using sophisti-
cated techniques such as relaxation methods, as well as
the basis for estimating the approximation gap of the
heuristic methods. These issues are under investigation.
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