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Abstract—The survivable logical topology mapping (SLTM)
problem in an IP-over-WDM optical network is to map each
link (u, v) in the logical topology GL (at the IP layer) into a
lightpath between the nodes u and v in the physical topology
GP (at the optical layer) such that failure of a physical link
does not cause the logical topology to become disconnected. It is
assumed that both the physical and logical topologies are 2-edge
connected. There are two lines of approach for the study of the
SLTM problem. One approach uses Integer Linear Programming
formulations. The main drawback with this approach is the
use of exponential number of constraints, one for each cutset
in GL. Moreover, it does not provide insight into the solution
when survivability against multiple physical failures is required.
The other approach, called the structural approach, uses graph
theory and was pioneered by Kurant and Thiran and further
generalized by us. In this paper we first present a generalized
algorithmic framework for the SLTM problem. This framework
includes several other frameworks considered in earlier works
as special cases. We then define the concept of robustness of a
mapping algorithm which captures the ability of the algorithm
to provide survivability against multiple physical failures. This is
similar to the concept of fault coverage used in hardware/software
testing. We analyse the different frameworks for their robustness
property. Using simulations, we demonstrate that even when an
algorithm cannot be guaranteed to provide survivability against
multiple failures, its robustness could be very high. The work
also provides a basis for the design of survivability mapping
algorithms when special classes of failures such as SRLG failures
are to be protected against.

I. INTRODUCTION

An IP-over-WDM network implements Internet Protocol
(IP) directly over a Wavelength Division Multiplexing (WDM)

network by mapping a set of given IP connections as lightpaths
in the WDM network [1]. A lightpath is an all optical

connection established by finding a path between the source

and the destination of an IP connection in the WDM network

and assigning it a wavelength [2]. Such networks use OXCs

to switch network traffic (lightpaths) in the WDM layer and

IP routers to route/reroute IP connections at the IP layer. The

set of IP connections form the logical topology and OXCs

along with actual optical fibers form the physical topology.

In the literature, it is common to refer to IP connections

Fig. 1. An IP-over-WDM Network.

as IP or logical links (edges), IP routers as logical nodes
(vertices), OXCs as physical nodes and set of fibers (a cable)

connecting the OXCs as physical links. Fig. 1 shows a typical

implementation of an IP-over-WDM network.

An optical fiber simultaneously carries several lightpaths.

Therefore, the failure of an optical fiber disconnects all the car-

ried lightpaths, causing multiple failures in the logical topol-

ogy, which severely impacts the entire network performance.

Mechanisms that allow networks to deliver an acceptable level

of service in the presence of a failure or failures are referred to

as survivability mechanisms and IP-over-WDM networks that

implement such mechanisms are called survivable IP-over-
WDM networks (henceforth, simply survivable networks).

The two widely discussed survivability mechanisms in the

literature are protection and restoration [1]. Protection is gen-

erally provided at the physical layer but can be implemented at

the logical layer also. It requires a dedicated backup lightpath
for each working lightpath such that the two lightpaths are dis-

joint. The backup path is used only when the working lightpath

fails. It is always possible to find two disjoint lightpaths, if the

physical topology is at least 2-edge connected [3]. Restoration

is usually provided at the logical layer by setting up working

lightpaths for the IP connections and then provisioning the978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



Fig. 2. Illustration of mapping and survivability for general networks. (a) A
logical topology (b) A physical topology (c) An unsurvivable mapping (d) A
survivable mapping.
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physical network with some additional (spare) capacity that is

used by the IP routers to find backup lightpaths for the failed

working lightpaths. However, backup paths can be guaranteed

only if the IP topology is initially embedded in such a way

that it stays connected after a failure. This leads to the study

of the survivable logical topology mapping problem.

The Survivable Logical Topology Mapping (SLTM) problem

in an IP-over-WDM optical network is to map each link (u, v)
in the logical topology (at the IP layer) into a lightpath between

the nodes u and v in the physical topology (at the optical layer)

such that failure of one or more physical links does not cause

the logical topology to become disconnected. It is assumed that

both the physical and logical topologies are 2-edge connected

(in short, two-connected).

Fig. 2(a) and Fig. 2(b) show a logical topology and a phys-

ical topology, respectively. Fig. 2(c) shows an unsurvivable

mapping of this logical topology. In this case, not all the map-

pings are disjoint and the logical topology is not survivable.

For example, the failure of physical link (4, 5) disconnects

the logical topology. Fig. 2(d) shows a survivable mapping.

In this case also, it can be seen that not all the mappings are

disjoint and a physical link failure may disconnect multiple

logical links but the logical topology still remains connected.

For example, if the physical link (5, 6) fails, logical links (2,

6) and (4, 6) get disconnected but it is possible to reach all

the logical nodes through the remaining logical links. It can be

observed that finding disjoint mappings for only the subset (1,

2), (2, 4), (4, 6), (6, 1) is sufficient to guarantee survivability

in this example. The question then arises as to how to select

the groups of logical links to be mapped into disjoint paths.

This has been the course of much of the research in this area.

The above example illustrates the important role played

by the pair-wise (mutually) disjoint paths problem in finding

survivable mappings. The problem of finding pair-wise dis-

joints paths is well studied and is NP-complete in general [4].

However, it is possible to find pair-wise disjoint paths in some

special cases e.g. when the physical topology is undirected and

three edge-connected, and the number of pair-wise disjoint

paths is two [5].

II. RELATED WORK

There are two lines of approach for the study of the SLTM

problem. One approach uses Integer Linear Programming

formulations. The main drawback with this approach is the

use of exponential number of constraints, one for each cutset

in GL. The other approach uses graph theory and provides a

basis for a structural study of the problem. The Integer Linear
Programming (ILP) approach was initiated by Modiano et al.

In [6][7], Modiano and Narula-Tam formally show that the

problem of finding survivable mappings is NP-complete for

general as well as for ring logical topologies. Therefore, they

provide Integer Linear Programs (ILPs) to find a solution. The

ILP is based on the observation that a logical topology can

get disconnected after the failure of a physical link only if the

physical link carries an entire cut of the logical topology, or

alternatively, every cut of the logical topology must contain

at least a pair of edges with pair-wise disjoint mappings in

order for the mappings to be survivable. However, the ILP

does not scale well as it must examine all the possible cuts, a

number that grow exponentially with the size of the topology.

In [8] Todimala and Ramamurthy, based on [6][7], provide an

improved ILP that applies to Shared Risk Link Group (SRLG).

The ILP incorporates wavelength assignment constraints and

only considers primary cuts, but does not scale well either.

However, when applied to planar cycles and hierarchical planar

cycles, the ILP can be solved fairly quickly. In [9] Ducatelle

and Gambardella also utilize the results from [6][7] and,

rather than evaluating all the cutsets, employ a probability

function as an estimate of the cutsets. Crochat et al. provide

in [10] a comprehensive framework for the logical topology

mapping problem in IP-over-WDM networks and define three

constraints (that include survivability) that must be respected

by a solution. They note that the problem is NP-complete

and suggest a heuristic based on Tabu search. Shenai and

Sivalingam suggest in [11] a hybrid approach to survivability

that uses a combination of restoration and protection.

In [12], certain metrics are defined that capture the quality of

a lightpath routing. Specifically, the concept of Minimum Cross
Layer Cut (MCLC) is defined in this paper. This metric is a

measure of the ability of a routing to tolerate multiple physical

edge failures. Finding a routing that maximizes MCLC is also

intractable. An ILP formulation to find a survivable routing

that maximizes a measure that is related to MCLC is given

in [12]. In [13], among other things, ILP formulations to

find a routing that minimizes spare capacity requirements is

presented. In a recent work [14], we have considered the

general case of capacitated optical networks with capacities

on physical edges and demands on logical edges. We have

presented MILP (Mixed Integer Linear Programming) formu-

lations and heuristics to generate a survivable routing that

maximizes the logical topology capacity and minimizes spare

capacity requirements.

The structural approach to the cross-layer survivability was

initiated by Kurant and Thiran (KT) in [15] and was later

extended and generalized by us in [16] and [17]. The KT



approach can be stated using the concept of a generalized ear

decomposition of a graph. An ear decomposition of GL is

a decomposition of the edge set of GL into a sequence of

subgraphs (called circuit ears) C0, C1, C2, . . . , Ck such that

C0 is a circuit in GL and each Ci, i > 0, is a circuit in

the graph G
′
L which is obtained by contracting all the edges

in C0, C1, C2, . . . , Ci−1. The subgraphs C0, C1, C2, . . . , Ck

are called the circuit ears of the ear decomposition. It is

shown in [15][16] that a routing is survivable if all the

edges in every circuit ear of size at least two are associated

with edge-disjoint lightpaths. It is also shown that if no

such ear decomposition is available then the there exists

no survivable routing for the given GL. The algorithm for

survivable routing based on this result is called CIRCUIT-

SMART. In [16], the dual concept of cutest ear decomposition

is defined and algorithm CUTSET-SMART is presented. This

paper also presents algorithm INCIDENCE-SMART based on

the concept of incidence sets that are special cases of cutsets.

A drawback of CUTSET-SMART is discussed and resolved

in [17]. In this paper it is shown that when circuit/cutest

ear decompositions are appropriately selected the distinction

between CIRCUIT-SMART and CUTSET-SMART disappears.

Note that circuit and cutest ear decompositions specify an

order for the selection of subgraphs in these decompositions.

The number of ears and sizes of ears in these decompositions

play a vital role in the ability of SMART-based algorithms to

tolerate multiple physical edge failures. In this context, several

interesting issues arise and they are under investigation.

The SLTM problem requires mapping logical links into

mutually disjoint paths in the physical topology. It is likely

that such paths may not exist unless the physical topology

satisfies certain connectivity requirements. In such cases, we

may have to augment the logical topology with additional

logical links to guarantee that the augmented topology admits

a survivable mapping. This augmentation problem has been

studied in [18] [19].

Most of the research on the SLTM problem has focused

on survivability against a single physical link failure. Usually,

survivability against multiple failures is achieved by providing

multiple pair-wise link disjoint paths between the nodes of

each logical link. Such an approach results in provisioning of

excessive spare capacity and is also not theoretically satisfying.

In this paper we study the SLTM problem for the multiple

failure scenario. Work in this paper is based on the concepts

and results presented in our earlier works [16][17]. So, we

give a brief discussion of these concepts in Section III. In

Section IV we present an algorithmic framework called GEN-

SMART which includes as special cases earlier frameworks

for the SLTM problem. In Section V we define the concept

of robustness of a logical mapping algorithm that captures

the ability of the algorithm to provide survivability against

multiple failures. This is similar to the concept of fault

coverage used in hardware/software testing. We analyse GEN-

SMART and its special cases for their robustness property.

We conclude in Section VI with simulations that demonstrate

that even when an algorithm cannot be guaranteed to provide

Fig. 3. (a) A graph with a spanning tree (bold lines) (b) A cut.
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survivability against multiple failures, its robustness could be

very high. The work also provides a basis for the design

of survivability mapping algorithms when special classes of

failures such as SRLG failures are to be protected against.

III. BASIC CONCEPTS

Consider a connected undirected graph G(V,E) with vertex

set V and edge set E. Without loss of generality, we assume

that there are no parallel edges or self loops in G. Let G have

|V | = n vertices (or nodes) and |E| = m edges (or links).

A connected acyclic subgraph of G containing all the n
nodes is called a spanning tree T of G. The edges of a

spanning tree T are called branches of T . The remaining edges

of G are called chords with respect to T . We may also refer

to chords as non-tree edges.

Consider a partition (S, S) of vertex set V . Here S denotes

the complement of S in V , i.e. S = V − S. Then the set of

edges with one node in S and the other in S is called a cut
of G.

For example, consider the graph G in Fig. 3(a). Here the

vertices are numbered 1, 2, . . . , 6. The bold edges in this figure

denote the branches of a spanning tree T of G and the dotted

edges are the chords of this tree. The partition (S, S) with

S = {1, 4, 6} and S = {2, 3, 5} defines the cut shown in Fig.

3(b).

Adding a chord c to a spanning tree T produces exactly

one circuit. This is called the fundamental circuit (in short,

f -circuit) of T with respect to the chord c. We denote this

circuit as B(c). For example, if we add chord c1 to the tree

in Fig. 3(a) we get the fundamental circuit B(c1) consisting

of the edges {c1, b1, b2, b3}.

Suppose we remove a branch b from a spanning tree T ,

then the tree T gets disconnected resulting in two trees

(not spanning) T1 and T2. The sets of nodes in T1 and

T2 define a partition of V . The corresponding cut Q(b) is

called the fundamental cutset (in short, f -cutset) of T with

respect to branch b. For example, if we remove the branch

b3 from the tree T of Fig. 3(a) then we get trees T1 and

T2 given by branches {b1, b2, b5} and {b4} respectively. The

corresponding fundamental cutset Q(b3) consists of the edges

{b3, c1, c3, c4, c5, c6}. Note that the subgraphs induced by the

vertex sets of T1 and T2 are both connected. Cuts with this

property are also called primary cuts [8].

Circuits and cutsets are dual concepts. Whereas the

CIRCUIT-SMART algorithm of Kurant and Thiran [16] is

based on circuits, the CUTSET-SMART based algorithms

in [16] are based on cutsets. The distinction between these



two classes of these algorithms for the SLTM problem are lost

when the circuits or cutsets are selected in a special way. So,

in the following we presents only those concepts and results

related to cutset.

The fundamental cutset matrix with respect to the tree T
can be defined as Qf = [qij ](n−1)∗(m). Qf has (n− 1) rows,

one for each fundamental cutset, and m columns, one for each

edge. The entry qij is defined as

qij = 1, if Q(bi) contains edge j
= 0, otherwise.

Arranging the rows of Qf such that the jth row corresponds

to f -cutset Q(bj) and arranging the columns to correspond to

edges in the order {b1, b2, . . . , bn−1, c1, c2, . . . , cm−n+1} the

Qf matrix can be written as Qf = [U |Qfc ]. For example, the

Qf matrix with respect to the tree T of Fig. 3(a) is given in

(1).

⎡
⎢⎢⎢⎢⎣

b1 b2 b3 b4 b5 c1 c2 c3 c4 c5 c6

b1 1 0 0 0 0 1 1 0 0 0 0
b2 0 1 0 0 0 1 1 0 1 1 1
b3 0 0 1 0 0 1 0 1 1 1 1
b4 0 0 0 1 0 0 0 1 1 0 0
b5 0 0 0 0 1 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

(1)

An ordered sequence Q(b1), Q(b2), . . . , Q(bk) is a cutset
cover sequence or simply a Q− sequence of length k if

a)
[
Q(bj)− bj −

⋃j−1
p=1 Q(bp)

]
�= ∅, 2 ≤ j ≤ k

b)
⋃k

p=1 Q(bp) = E − {branches not in the Q-sequence}.
The set of branches not in the cutset cover sequence be

called unmapped branches.

Basically, the fundamental cutsets in the cutset cover se-

quence Q(b1), Q(b2), . . . , Q(bk) contains all the edges in the

graph except the unmapped branches, and every cutset Q(bj)
in this sequence has at least one edge that is not in any cutset

that precedes Q(bj) in this sequence.

Note that for a given spanning tree and its f -cutsets,

there may be more than one Q-sequence. For example for

the fundamental cutsets given in (2), following are three Q-

sequences.

1) Q(b4), Q(b5), Q(b2)
2) Q(b4), Q(b5), Q(b1), Q(b2)
3) Q(b1), Q(b2), Q(b4).

Without the loss of generality we assume that

Q(b1), Q(b2), . . . , Q(bk) is a Q-sequence of length k.

Let us define Ŝ(bj) as follows:

Ŝ(b1) = Q(b1)− b1
Ŝ(bj) = Q(bj)− bj −

⋃j−1
p=1 Q(bp), 2 ≤ j ≤ k.

Basically, Ŝ(b1) is the set of all chords in the cutset

Q(b1) and Ŝ(bj), j �= 1, is the set of all chords in the

Q(b1) Q(b2) Q(b3) · · · Q(bk−1) Q(bk) Ŝ(b1) Ŝ(b2) Ŝ(b3) · · · · · · · · · Ŝ(bk−1) Ŝ(bk)
U O O · · · O O I O O · · · O · · · O O
O U O · · · O O × I O · · · O · · · O O
O O U · · · O O × × I · · · O · · · O O
· · · · · · · · · . . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
O O O · · · U O × × × × × × I O
O O O · · · O U × × × × × × O I (2)

cutset Q(bj) that are not in any of the cutsets that precede

Q(bj) in the cutset cover sequence. One can show that the

subgraphs bj
⋃

Ŝ(bj) are the cutset ears of size at least two

in a generalized cutset ear decomposition of G.

Deletion of an edge and contraction of an edge are dual

operations. Here by contraction of an edge we refer to the

operation of identifying the end vertices of the edge, short-

circuiting the end vertices and removing self loops that result

from this short-circuiting. It can be shown that deletion of

a row from the Qf matrix corresponds to contraction of the

corresponding branch from the graph. So, we can see that

the fundamental cutsets in a cutset cover sequence are the

fundamental cutsets of the graph obtained by contracting the

unmapped branches.

An ordered sequence Q(b1), Q(b2), . . . , Q(bk) is a gener-
alized cutset cover sequence if

a) this sequence is a cutset cover sequence, and

b) for every unmapped branch bi, Q(bi)
⋂

Ŝ(bj) = Ŝ(bj),

where j is the largest index such that Q(bi)
⋂
Ŝ(bj) �= ∅.

In this we say that the unmapped branch bi is covered by

the branch bj .We also say that chord bj covers itself.

Given a generalized cutset cover sequence

Q(b1), Q(b2), . . . , Q(bk), we define the set Q−Cover(bi) for

each i = 1, 2, . . . , k as the set of all branches (including itself)

covered by the branch bi. The Q−Cover sets define a partition

of the branches of the given spanning tree. If we arrange the

rows of the f -cutset matrix to correspond to the branches in

the sets Q−Cover(b1), Q−Cover(b2), . . . , Q−Cover(bk)
in that order and arrange the columns to correspond to the

sets, then the f -cutset matrix will have the form shown in (2).

In this figure, I stands for a matrix of all 1’s, O is a matrix

of all 0’s and U refers to the unit matrix of appropriate size.

Also Q(bi) stands for Q− Cover(bi).
The f -cutset matrix of a hypothetical graph arranged as in

(2) will look as in (3).

For the example in (3), if we select the cutset cover

sequence Q(b1), Q(b4), Q(b6), Q(b8), the corresponding Q−
Cover(bi)’s are :

Q− Cover(b1) = {b1, b2, b3}; Q− Cover(b4) = {b4, b5};
Q−Cover(b6) = {b6, b7}; and Q−Cover(b8) = {b8, b9}.

The Ŝ(bj)’s are:

Ŝ(b1) = {c1, c2, c3}; Ŝ(b4) = {c4, c5, c6};
Ŝ(b6) = {c7, c8}; and Ŝ(b8) = {c9, c10, c11}.

IV. GEN-SMART: A GENERALIZED ALGORITHMIC

FRAMEWORK FOR THE SLTM PROBLEM

In this section we first present GEN-SMART, an algorithmic

framework for the SLTM problem. This framework shown

in Fig. 4 includes as special cases the other SMART-based
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Fig. 4. Algorithm GEN-SMART

1: Starting with any cutset cover sequence generate a gen-

eralized cutset cover sequence of GL. Let this sequence

be Q(b1), Q(b2), . . . , Q(bk).
2: for i = 1, 2, . . . , k do
3: Let A ⊆ Ŝ(bi) and B ⊆ Q− Cover(bi)
4: Map the edges in the set bi

⋃
A
⋃
B into disjoint

lightpaths in GP .

5: end for

TABLE I
SPECIAL CASES OF GEN-SMART ALGORITHMS

Choice of A and B Special case of GEN-SMART

|A| = 1, |B| = 1 CUTSET-SMART-SIMPLIFIED

A = Ŝ(bi), |B| = 1 CUTSET-SMART
|A| = 1, B = Q− Cover(bi) CIRCUIT-SMART

A = Ŝ(bi), B = Q− Cover(bi) GEN-CUTSET-SMART

algorithms discussed in [17]. We also discuss the extent to

which GEN-SMART can provide survivability against multiple

failures.

For the sake of simplicity in presentation we have assumed

in the description of GEN-SMART that all the edges in the

set A ⊆ Ŝ(bi) and B ⊆ Q − Cover(bi) can be mapped into

disjoint paths in GP . But this may not always be possible. In

such cases, we map a maximum subset of these edges into

disjoint paths. To the other edges in this set we add protection

edges and map each edge and its protection edge into disjoint

paths in GP . (see [19]). Also, if we choose A = Ŝ(bi) and

B = Q − Cover(bi) then GEN-SMART becomes the same

as GEN-CUTSET-SMART presented in [17]. Also, different

choices of A and B in GEN-SMART lead to different versions

of SMART-based algorithms discussed in earlier works. These

choices and the corresponding versions are given next.

For the sake of completeness, we repeat these special

versions in Fig. 5 - 8. See also Table I.

Fig. 5. Algorithm CUTSET-SMART-SIMPLIFIED

1: Starting with any cutset cover sequence generate a gen-

eralized cutset cover sequence of GL. Let this sequence

be Q(b1), Q(b2), . . . , Q(bk).
2: for i = 1, 2, . . . , k do
3: Pick a chord c in Ŝ(bi).
4: Map the edges bi and c into disjoint lightpaths in GP .

5: end for

Fig. 6. Algorithm CUTSET-SMART

1: Starting with any cutset cover sequence generate a gen-

eralized cutset cover sequence of GL. Let this sequence

be Q(b1), Q(b2), . . . , Q(bk).
2: for i = 1, 2, . . . , k do
3: Map the edges in the set bi

⋃
Ŝ(bi) into disjoint light-

paths in GP .

4: end for

Fig. 7. Algorithm CIRCUIT-SMART

1: Starting with any cutset cover sequence generate a gen-

eralized cutset cover sequence of GL. Let this sequence

be Q(b1), Q(b2), . . . , Q(bk).
2: for i = 1, 2, . . . , k do
3: Pick a chord c in Ŝ(bi).
4: Map the edges in the set c

⋃
Q−Cover(bi) into disjoint

lightpaths in GP .

5: end for

Fig. 8. Algorithm GEN-CUTSET-SMART

1: Starting with any cutset cover sequence generate a gen-

eralized cutset cover sequence of GL. Let this sequence

be Q(b1), Q(b2), . . . , Q(bk).
2: for i = 1, 2, . . . , k do
3: Map the edges in the set Ŝ(bi)

⋃
Q − Cover(bi) into

disjoint lightpaths in GP .

4: end for

Some important observations on the different versions of

GEN-SMART are now in order:

• CUTSET-SMART-SIMPLIFIED, the simplest of all these

algorithms, does not guarantee survivability even against

a single physical link failure, unless protection edges are

added to the unmapped branches [16][17].

• CUTSET-SMART doest not guarantee survivability even

against a single physical link failure, unless protection

edges are added to the unmapped branches [17]. But it has

potential to provide some degree of survivability against

multiple failures.

• CIRCUIT-SMART guarantees survivability against a sin-

gle failure [15][16], but its potential to provide surviv-

ability against multiple failures is limited.

• GEN-CUTSET-SMART guarantees survivability against



a single failure, and its potential to guarantee survivability

against multiple failures is very high.

Both CUTSET-SMART and GEN-CUTSET-SMART have

higher potential to provide survivability against multiple fail-

ures because in both these algorithms all the edges in Ŝ(bi)
are mapped. In the next section we provide an analytical

evaluation of the extent to which these algorithms provide

survivability against multiple failures.

V. ROBUSTNESS OF SURVIVABLE LOGICAL TOPOLOGY

MAPPING ALGORITHMS

In this section we first define the concept of robustness of

an algorithm that is a measure of the ability of the algorithms

to provide survivability against multiple physical failures.

Given a logical topology GL and a physical topology

GP , the robustness β(A, r) of a logical topology mapping

algorithm A with respect to GP and GL is defined as the ratio

of the number of cuts of GL that are protected by algorithm

A against r physical link failures to the total number of cuts

in GL.

For these algorithms we now proceed to evaluate β(A, r).
In the following A1, A2, A3 and A4 denote algo-

rithms CUTSET-SMART-SIMPLIFIED, CUTSET-SMART,

CIRCUIT-SMART, and GEN-CUTSET-SMART, respectively.

Given a generalized cutset cover sequence

Q(b1), Q(b2), . . . , Q(bk). Let us first partition all cuts

in GL into the sets Q1, Q2, . . . , Qk where Qi is the set

of all cuts that contain at least one branch from the set

Q − Cover(bi) and no branch from any set Q − Cover(bj),
j > i. Note that this partition is well defined since every cut

must have at least one branch.

Consider now a cut S ∈ Qi. Assume that S contains

p branches from Qi. Now we recall the following results

from [16][17].

Theorem 1:
a) If a cut contains the branches {b1, b2, . . . , bj} then the

corresponding cut vector can be represented as modulo 2
addition of the vectors Q(b1), Q(b2), . . . , Q(bj). That is, the

cut vector is equal to Q(b1)
⊕

Q(b2)
⊕

. . .
⊕

Q(bj).
b) Given a cutset cover sequence Q(b1), Q(b2), . . . , Q(bk), let

Q(bi1), Q(bi2), . . . , Q(bil) be a subsequence of this sequence

then Ŝ(bil) ⊆ Q(bi1)
⊕

Q(bi2)
⊕

. . .
⊕

Q(bil).
In view of Theorem 1 (b), the cut S will have the form in

Fig. 9 if S has an odd number p of branches from the set

Q−Cover(bi). Note that if p is even then none of the chords

in Ŝ(bi) will be in S. The numbers of edges mapped disjointly

by the different Algorithms A1, A2, A3, and A4 are:

• Algorithm A1 maps bi and a chord c in Ŝ(bi) disjointly,

if S contains bi.
• Algorithm A2 maps bi and all edges in Ŝ(bi) disjointly,

if S contains bi.
• Algorithm A3 maps all the p branches and a chord c in

Ŝ(bi) .

• Algorithm A4 maps all the p branches and all the chords

in Ŝ(bi).

Thus we have the following:
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• Algorithm A1 protects S against at least one physical link

failure, if S contains bi.
• Algorithm A2 protects S against at least |Ŝ(bi)| physical

link failures, if S contains bi.
• Algorithm A3 protects S against at least p physical link

failures.

• Algorithm A4 protects S against at least p+ |Ŝ(bi)| − 1
physical link failures.

Since p ≥ 1, we can restate the last statement as:

• Algorithm A4 protects S against at least |Ŝ(bi)| physical

link failures.

Let us now calculate the total number of cuts in Qi that has

an odd number of branches from the set Q− Cover(bi). Let

this number be denoted as ODD(Qi).
Let hi = |Q− Cover(bi)|, gi = |Ŝ(bi)|.
h = minhi and g = min gi.
Also, let Ni = h1 + h2 + . . .+ hi.

Robustness of Algorithm A1

Algorithm A1 will protect against a single physical failure

all cuts from each Qi that have an odd number of branches

from the set Q−Cover(bi) and contain branch bi. This number

is equal to

= (Number of combinations of branches from the sets Q−
Cover(bk), k = 1, 2, . . . , i − 1) × (Number of combinations

of odd number of branches from the set Q − Cover(bi) that

contain bi).
= 2Ni−1 × 2hi−2

= 2Ni/4.
Since the number of cuts in GL is 2n−1−1, where n is the

number of nodes in GL, and n− 1 = h1 +h2 + . . .+hk , we

get

β(A1, 1) ≥ 1/4(

k∑
i=1

2Ni)/(2n−1 − 1) (4)

Note that if p ≥ 2, β(A, p) ≥ 0, since there is no guarantee

that algorithm A1 will protect any cut if 2 or more physical

failures occur.



Robustness of Algorithm A2:
Algorithm A2 will protect against gi physical failures all

cuts from each Qi that have an odd number of branches from

the set Q − Cover(bi) and contain branch bi. This follows

from the fact that each such cut will have bi and all edges in

Ŝ(bi) that are mapped disjointly.

So,

β(A2, g) ≥ 1/4(

k∑
i=1

2Ni)/(2n−1 − 1) (5)

Robustness of Algorithm A3:
Algorithm A3 will protect against at least p physical failures

all cuts from each Qi that have an odd number p of branches

from the set Q − Cover(bi). This follows from the fact that

each such cut will have p branches and at least one chord c
in Ŝ(bi) that are mapped disjointly.

This number is equal to

= (Number of combinations of branches from the sets Q−
Cover(bk), k = 1, 2, . . . , i − 1)× (Number of combinations

of p branches from the set Q− Cover(bi))
= 2Ni−1C(hi, p).
So

β(A3, p) ≥
⎛
⎝

k∑
i=1

2Ni−1

hi∑
odd q≥p

C(hi, q)

⎞
⎠ /(2n−1 − 1),

for odd p ≥ 1 (6)

where C(hi, q) is the number of q-combinations of hi

elements.

If p = 1, then it can be verified that β(A3, 1) = 1,

confirming that CIRCUIT-SMART protects GL against any

single physical link failure [15][16].

Robustness of Algorithm A4:
Algorithm A4 will protect against at least

∣∣∣Ŝ(bi)
∣∣∣ physical

failures all cuts from each Qi that have an odd number of

branches from the set Q− Cover(bi). This follows from the

fact that each such cut will have at least one branch and all

the chords in Ŝ(bi) that are mapped disjointly.

This number is equal to

= (Number of combinations of branches from the sets Q−
Cover(bk), k = 1, 2, . . . , i − 1)× (Number of combinations

of p branches from the set Q− Cover(bi)).
= 2Ni−1 × 2hi−1

= 2Ni/2.

So

β(A, p) ≥ 1/2(
k∑

i=1

2Ni)/(2n−1 − 1) (7)

Let SUM =
(∑k

i=1 2
Ni

)
/(2n−1 − 1).

Then we can rewrite (4), (5), (7) as

β(A1, 1) ≥ 1/4 SUM
β(A2, g) ≥ 1/4 SUM
β(A4, g) ≥ 1/2 SUM
The value of SUM depends on the choice of generalized

cutset cover sequence selected.

The lower bounds in the above are the numbers of cuts that

are guaranteed to be protected by the respective algorithms.

Depending on the length of the generalized cutset cover

sequence, the sizes of hi’s and gi’s, the location of physical

link failures and the mappings used, the number of protected

cuts could be much larger. The higher the value of β(A, r) the

higher will be the probability that algorithm A will protect GL

from any set of r physical link failures.

VI. SIMULATION RESULTS AND ANALYSIS

To compare the performance of CUTSET-SMART-

SIMPLIFIED, CIRCUIT-SMART, CUTSET-SMART, and

GEN-CUTSET-SMART with respect to their ability to provide

multiple failure survivability simulation studies were con-

ducted using LEMON (Library for Efficient Modeling and

Optimization in Networks) [20] and G++ under Linux system.

The physical and logical topologies were regular topologies

with connectivity equal to 3, 4, and 5 constructed using a

procedure originally given by Harary and described in [21].

The number of nodes in the physical topologies was set to 50,

60, 70, 80, 90, and 100 nodes. The nodes in logical topologies

were a subset of the physical nodes and the number of nodes

in a logical topology was set to 50% of the nodes in the

corresponding physical topology.

For each combination of (topology connectivity, number of

nodes in physical topology, number of physical link failures),

100 physical and corresponding logical topology pairs were

generated and tested against 4 algorithms described in the

previous section. Given k-connected physical and logical

topologies, the survivability of the GL under multiple (2 to

k − 1) physical link failures is determined by the number of

GL’s which remain connected against physical link failures.

Our simulation enumerated all possible combinations of phys-

ical link failures and evaluated how many GL’s could remain

connected. The success rate in each case is calculated.

First a spanning tree on a logical topology was generated

and the fundamental circuits and cutsets with respect to

the spanning tree were found. The generalized cutset cover

sequence was generated using the algorithms in [17]. With the

information of the fundamental cutsets, the Q−Cover(bi) and

Ŝ(bi) sets were generated as shown in (2) and (3). Then we

applied the four algorithms (CUTSET-SMART-SIMPLIFIED,

CIRCUIT-SMART, CUTSET-SMART, and GEN-CUTSET-

SMART) and mapped maximal number of edges disjointly in

bi
⋃
A
⋃
B. If the disjoint mappings for some of the edges in

bi
⋃
A
⋃
B do not exist, a parallel edge is added to the logical

topology and the newly added edge is mapped disjointly with

the original edge. At the end of the procedure, the unmapped

logical edges were randomly mapped, which could increase

the chance of survivability for the logical mapping.

The simulation results giving the success rate are shown

in Table II, III, and IV. Notice that in Table II, extra tests

for the single failure case in 3-connected physical and logical

topologies are presented, which show that CUTSET-SMART

and GEN-CUTSET-SMART can guarantee 100% survivability

for the logical topology under a single physical link failure,



TABLE II
SUCCESS RATE FOR 3-CONNECTED PHYSICAL AND LOGICAL TOPOLOGIES

3-conn 50 nodes 60 nodes 70 nodes
failures \
Algorithms

1 2 1 2 1 2

A1 92.173 71.857 89.711 65.294 89.429 64.338
A2 92.987 73.701 90.533 67.080 90.371 66.024
A3 100 85.367 100 83.775 100 82.263
A4 100 86.426 100 84.406 100 83.375
3-conn 80 nodes 90 nodes 100 nodes
failures \
Algorithms

1 2 1 2 1 2

A1 87.617 57.744 86.570 55.356 84.427 52.313
A2 88.700 59.710 87.963 57.2 85.853 54.405
A3 100 78.811 100 78.377 100 76.149
A4 100 79.913 100 79.367 100 77.073

TABLE III
SUCCESS RATE FOR 4-CONNECTED PHYSICAL AND LOGICAL TOPOLOGIES

4-conn 50 nodes 60 nodes 70 nodes
failures \
Algorithms

2 3 2 3 2 3

A1 94.709 85.841 93.907 84.533 93.655 81.356
A2 95.975 88.679 95.272 86.979 94.841 84.513
A3 96.646 88.262 95.950 87.549 95.383 85.219
A4 97.367 90.263 96.665 89.159 96.235 86.984
4-conn 80 nodes 90 nodes 100 nodes
failures \
Algorithms

2 3 2 3 2 3

A1 92.381 80.498 91.575 78.445 91.000 76.815
A2 94.018 83.343 93.373 81.564 93.043 79.780
A3 94.801 83.473 93.983 81.802 93.466 79.700
A4 95.639 85.396 95.018 83.819 94.41 81.582

TABLE IV
SUCCESS RATE FOR 5-CONNECTED PHYSICAL AND LOGICAL TOPOLOGIES

5-conn 50 nodes 60 nodes 70 nodes
failures \
Algorithms

2 3 2 3 2 3

A1 99.764 99.450 99.785 99.366 99.809 99.246
A2 99.912 99.653 99.880 99.634 99.888 99.583
A3 99.877 99.617 99.869 99.541 99.867 99.473
A4 99.956 99.810 99.935 99.771 99.937 99.746
5-conn 80 nodes 90 nodes 100 nodes
failures \
Algorithms

2 3 2 3 2 3

A1 99.772 99.231 99.668 99.184 99.674 99.089
A2 99.858 99.557 99.785 99.510 99.787 99.507
A3 99.848 99.827 99.827 99.437 99.804 99.363
A4 99.916 99.915 99.915 99.725 99.899 99.654

while CUTSET-SMART-SIMPLIFIED and CIRCUIT-SMART

can not.

Based on the simulations, we summarize our observations

as follows.

• The value of SUM is at most 2. This can be reached

when each hi = 1. In such cases, (4) and (5) simplify

to β(A1, 1) ≥ 1/2, β(A2, g) ≥ 1/2. In spite of this low

value on the corresponding robustness, algorithms A1 and

A2 have higher ability to provide survivability against

multiple physical link failures.

• As expected, A2 has higher potential to provide surviv-

ability against multiple failures compared to A1.

• As expected, algorithms A3 and A4 have higher success

rate compared to A1 and A2.

• The success rate of all algorithms is higher for higher

values of connectivity of physical topologies. This could

be due to the survivability of a large number of disjoint

paths. This calls for future research.

VII. CONCLUSION

The survivable logical topology mapping (SLTM) problem

in an IP-over-WDM optical network is to map each link (u, v)
in the logical topology GL (at the IP layer) into a lightpath

between the nodes u and v in the physical topology GP (at

the optical layer) such that failure of a physical link does

not cause the logical topology to become disconnected. It is

assumed that both the physical and logical topologies are 2-

edge connected. Most research in this area has focused on

logical topology survivability against a single physical link

failure. Also, existing approaches do not provide insight into

the problem when multiple physical link failures, such as

SRLG failures, occur. In this paper we pursued the structural

approach developed in [15][16][17] to study the logical topol-

ogy mapping problem for the case of multiple failures. We first

presented a generalized algorithmic framework for the SLTM

problem. This framework includes several other frameworks

considered in our earlier works [16][17] as special cases. We

then defined the concept of robustness of a mapping algorithm

which captures the ability of the algorithm to provide surviv-

ability against multiple physical link failures. This is similar

to the concept of fault coverage used in hardware/software

testing. The higher the value of the robustness of an algorithm

the higher the probability that the algorithm will be able to

provide survivability. We analyzed the different frameworks

for their robustness property. Specifically, we provided lower

bounds for the robustness for the different algorithms. These

lower bounds give the number of cuts which an algorithm is

guaranteed to protect against multiple failures. The quantity

SUM used in these formulas depends on several structural

features such as the choice of the generalized cutset cover

sequence to be used to provide higher degree of robustness.

Using simulations, we demonstrate that even when an algo-

rithm cannot be guaranteed to provide survivability against all

multiple failures, its robustness could be very high. The work

also provides a basis for the design of survivable mapping

algorithms when special classes of failures such as SRLG

failures are to be protected against. Further work along these

lines is in progress.
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