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Abstract— The fifth generation of communication technology
(5G) revolutionizes mobile networks and the associated ecosys-
tems through the integration of cross-domain networks. Network
slicing is an enabling technology for 5G as it provides dynamic,
on-demand, and reliable logical network slices (i.e., network
services) over a common physical network/infrastructure. Since
a network slice is subject to failures originated from disruptions,
namely node or link failures, in the physical infrastructure, our
utmost interest is to evaluate the reliability of a network slice
before assigning it to customers. In this paper, we propose an
evaluation metric, survivable probability, to quantify the reliability
of a network slice under random physical link failure(s). We
prove the existence of a base protecting spanning tree set which
has the same survivable probability as that of a network slice.
We propose the necessary and sufficient conditions to identify
a base protecting spanning tree set and develop corresponding
mathematical formulations, which can be used to generate
reliable network slices in the 5G environment. In addition to
proving the viability of our approaches with simulation results,
we also discuss how our problems and approaches are related
to the Steiner tree problems and present their computational
complexity and approximability.

Index Terms—Survivable probability, protecting spanning tree,
reliable cross-layer network, network slicing, 5G

I. INTRODUCTION

5G communications “empower socio-economic transfor-
mation in countless ways, including those for productivity,
sustainability, and well-being” [1]. The latest optical tech-
niques [2][3] and architectures [4][5] serve as the global net-
work infrastructure which provides capacities and guarantees
the performance of 5G networks, especially network diversity,
availability, and coverage.

To satisfy the requirements of different subscriber types,
applications, and use cases, network slicing was introduced
which enables programmability of network instances called
network slices. These instances should satisfy the bilateral
service level agreement (SLA) [6][7], such as latency, reliabil-
ity, and value-added services, among virtual network operators
and subscribers, especially mobile operators and subscribers,
in 5G systems. Network slicing allows multiple virtual net-
works to be created on top of a common underlying physical
infrastructure (including physical and/or virtual networks) [8].
Since the instantiation of network slices involves a physical
network and multiple virtual networks, a general way to model
such networks is through the cross-layer network topologies.

The reliability of the physical infrastructure directly affects
the network capabilities and performance level that a network
slice can provide. Thus, a way to identify and quantify the
reliability of a cross-layer network when disruptions occur
to the physical infrastructure, which leads to more reliable
network slicing, would be of interest to the virtual network
operators.

To design a reliable cross-layer network, a key question
to be answered is how to quantify the reliability of a cross-
layer network. When considering the reliability of single-
layer networks, link failures are described as random events
with corresponding failure probabilities, and the survivable
probability is the probability of a network to remain connected
after random physical link failure(s) [9][10]. Comparatively, a
failure in the physical infrastructure of a cross-layer network
may not only disrupt the flows in the physical network,
but also affect demands satisfaction in the network slices
as the demands from each slice are routed/realized through
the physical infrastructure. In this paper, we assume that
each physical link may carry its own probability of failure
(reliability index) and introduce the concept of cross-layer
network survivable probability to capture the probability of
virtual networks of a network slice to remain connected after
any physical link failure. In the rest of the paper, we’ll
use survivable probability as an abbreviation for cross-layer
network survivable probability.

Different from prior research on the survivable cross-layer
network design where all physical links have either 0% or
100% probability of failure, the survivable probability concept
offers network operators a way to fine-tune a cross-layer
network with the corresponding level of SLA before offering
it to the subscriber. This concept can also be applied to several
related applications, such as the design of reliable cloud [11]
and IP-over-WDM [12] networks, where an IP-over-WDM
network carries the traffic of each IP link through a lightpath in
the WDM network, which utilizes a single wavelength through
optical nodes like OXCs and OADMs without opto-electro-
optical (O-E-O) conversion on intermediate optical nodes; and
a cloud network constructed on top of a data center network
is connected by fiber optics.

ar
X

iv
:1

71
0.

05
64

0v
1 

 [
cs

.N
I]

  1
6 

O
ct

 2
01

7



II. LITERATURE REVIEW

The design of a reliable single-layer network has two main
mechanisms, namely protection and restoration [13][14][15]
which guarantee the network’s connectivity after the failure(s)
of network component(s). Two lines of investigation were
conducted in the fields of operations research and telecom-
munication networks. [16][17][18][19] explored mixed-integer
programming techniques and proposed solution approaches for
the survivable network design problem (with 100% survivable
probability) through polyhedron studies. They usually do not
consider network failures as random events but with 0%
or 100% reliable probability. [20][21][22][23] studied the
reliable optical network and optical routing design through p-
cycles, any-cast routing, and path set protection. [24][25][26]
discussed reliable wireless network design with scalable re-
liable multicast protocols and opportunistic routing in multi-
hop wireless networks. [27][28][29][30] reviewed works on
reliable mobile networks emphasizing multipath or position-
based routing in mobile ad hoc, wireless sensor, and vehicular
ad hoc networks.

The studies of cross-layer networks focusing on their surviv-
able design, an NP-complete problem [31][32], consider both
logical and physical networks, where logical nodes and links
are mapped onto physical nodes and paths, respectively (with
different routing schemes). [33][34][35] utilized a sufficient
condition, disjoint mappings of logical links, for survivable
cross-layer network design, which transformed the cross-
layer network design problem into the single-layer setting.
Necessary and sufficient conditions for survivable cross-layer
network design were proposed in [32][36][37] via cross-
layer cutsets, which require the enumeration of all cross-layer
cutsets. To avoid the enumeration, [38][39] proposed another
necessary and sufficient conditions based on a cross-layer
protecting spanning tree set (in short, protecting spanning tree
set), which guarantee the connectivity of the logical network
through the existence of a protecting spanning tree after any
physical link failure. It has been shown theoretically and
computationally that a survivable cross-layer routing/network
design may not exist for a given network; its existence highly
relies on the network topology. Thus, unless some specific
network structure which guarantees survivability is embedded
in a given network [40], the analysis and study on how to
quantify and design a good/maximal partially survivable cross-
layer routing also motivate this work. Survivable probability,
an evaluation metric applicable to all cross-layer network
topologies, is our attempt to address this problem in a general
sense.

In this paper, we develop the survivable probability of a
cross-layer network, which describes the chance of a network
slice to maintain its service against failure(s) in the physical in-
frastructure. Its single-layer counterpart, discussed in [9][10],
introduced the level of survivability which is “a quantitative
measure for specifying any desired level of survivability”
through survivable spanning trees. Our design and its single-
layer counterpart share the same assumption that each physical

link is associated with a probability of failure. Nevertheless,
these two problems are fundamentally different due to their
network settings.

Another related work in [41] evaluated the reliability of
a cross-layer network under random physical link failure by
calculating the failure polynomials. Our proposed approach
differs from that in [41] in three aspects: (1) we seek an
exact solution approach with the objective to quantify the
maximal survivable probability rather than an approximation
through failure polynomials (which involves enumeration of
cross-layer cutsets); (2) relieving from cross-layer cutset enu-
meration, our approach is scalable to larger size cross-layer
networks; and (3) our approach can address both random or
unified failure probabilities on physical links compared with
the unified one in [41].

Our contributions in this paper are as follows. (1) We
define cross-layer network survivable probability, an evalu-
ation metric on the reliability of cross-layer networks. (2)
We demonstrate the existence of the protecting spanning tree
set (as the base protecting spanning tree set) which shares
the same survivable probability as that of a given cross-layer
network. We prove the necessary and sufficient conditions to
identify a base protecting spanning tree set. (3) Our proposed
approach, which requires at most |EP | (the number of physical
links) protecting spanning trees, directly calibrates the surviv-
able probability through a base protecting spanning tree set
while avoiding the enumeration of cross-layer cutsets. (4) By
constructing a base protecting spanning tree set, the maximal
survivable probability of a cross-layer network is tractable.
Given a unified physical link failure probability, we prove that
the design of a cross-layer network with the maximal surviv-
able probability is equivalent to the cross-layer network design
with the minimal number of shared physical links utilized by
a base protecting spanning tree set. (5) We prove that the
maximal protecting spanning tree, a protecting spanning tree
with the maximal survivable probability, is a Steiner tree in the
physical network whose terminal nodes are the corresponding
physical nodes onto which the logical nodes are mapped. We
also discuss that the Steiner tree packing problem along with
network augmentation may provide the maximal survivable
probability (100%) in a cross-layer routing.

The rest of this paper is organized as follows. Section III
provides formal definitions and descriptions of the survivable
probability and base protecting spanning tree set. Mathe-
matical formulations for the maximal protecting spanning
tree and the maximal survivable probability are presented in
Section IV. We discuss the relationship between the protecting
spanning tree in a cross-layer network and Steiner tree in a
single-layer network in Section V, followed by the simulation
results in Section VI and conclusions in Section VII.

III. DEFINITIONS AND PROBLEM DESCRIPTION

Given a physical network denoted as GP = (VP , EP ), and
a logical network (i.e., a virtual network in a network slice)
denoted as GL = (VL, EL), where each logical node has an
one-to-one mapping onto a physical node and each logical



Notation Description
GP =

(VP , EP )
Physical network, where VP and EP represent the
node and edge set, respectively, with node indices
i, j and link index e

GL =
(VL, EL)

Logical network, where VL and EL denote the node
and edge set, respectively, with node indices s, t and
link indices µ,ν

(GP , GL) The cross-layer network with known logical-to-
physical mapping

Pu A set of physical paths (routings) for u ∈ EL, where
pu is an element of Pu, i.e., pu ∈ Pu

T, τ A protecting spanning tree set with τ as a protecting
spanning tree, i.e., τ ∈ T

M(·) A general logical-to-physical mapping function, with
node mapping M(s) = i, link mapping M(µ) =
pµ, and protecting spanning tree mapping M(τ) =
∪µ∈τpµ

λ A tuple which denotes a protecting spanning tree and
its mapping, i.e., λ = [τ,M(τ)]

Λ A tuple which denotes a protecting spanning tree set
and its mapping, i.e., Λ = {λ}

ΛF (M(EL)) A collection of protecting spanning tree’s with link
mapping M(EL)

ΛB(GP , GL) A base protecting spanning tree set and its mapping
of a cross-layer network GP and GL

EP (λ) All physical links utilized by the routings of λ’s
branches

EMP (T ) Common physical links shared by the routings of all
λ ∈ T

Ω(EL) A set of logical-to-physical link mappings, where
M(EL) ∈ Ω(EL) is one of its instances

R(M(EL)) A set of physical links whose failures disconnect GL
over a given mapping M(EL)

Φ(GP , GL) The survivable probability of a cross-layer network

Parameter Description
ρe Probability of failure for physical link e, e ∈ EP
ρ Unified probability of failure for all e ∈ EP

TABLE I: Notations and parameters

edge has an one-to-one mapping onto a physical path. We let
M(·) denote the general logical-to-physical mapping function.
The logical-to-physical node mapping is denoted as M(s) =
i, s ∈ VL and i ∈ VP ; M(u) = pu, u ∈ EL and pu ⊂
EP is the logical-edge-to-physical-path mapping; and M(τ) =
∪u∈τM(u) is the mapping of a logical spanning tree τ ⊂ GL
onto GP . Notations and parameters used in this paper are listed
in Table I.

A. Protecting Spanning Tree Set

For a given logical-to-physical mapping M(·) of a cross-
layer network (GP , GL), the corresponding co-mapping [38],
denoted as MC(·), is defined as follows. Co-mapping of a
logical edge ν is MC(ν) = EP \M(ν) with ν ∈ EL; and
co-mapping of logical spanning tree τ is MC(τ) = EP \⋃
ν∈τ

M(ν); that is, MC(τ) =
⋂
ν∈τ M

C(ν).

Given M(·), MC(·), and a set of logical spanning trees T
of a cross-layer network (GP , GL), the protecting spanning
tree set [38] is defined as follows. If physical link (i, j) is in
MC(τ), τ ∈ T , then τ is called a protecting spanning tree
which protects (i, j). If for every physical link (i, j), there

exists a spanning tree in T which protects (i, j), then the
routing is a survivable routing, and T is called a protecting
spanning tree set for survivable routing. In this paper, given
a protecting spanning tree τ , we let λ = [τ,M(τ)] denote a
protecting spanning tree and its mapping, and EP (λ) = {e :
e ∈ ∪µ∈τpµ} be the physical link set utilized by the routings
of λ.

Given these definitions, we may now derive the evaluation
metric, the survivable probability, in the following section.

B. Survivable Probability

Given a cross-layer network (GP , GL) and its node mapping
M(ν) for all ν ∈ VL. We assume that each physical link
e ∈ EP is associated with probability of failure ρe, where
0 ≤ ρe ≤ 1. The survivable probability of (GP , GL) is defined
as follows.

Definition 1: Given (GP , GL) and the failure probability
ρe, for all e ∈ EP , the survivable probability of this network
is the probability of the logical network to remain connected
after any physical link failure(s).
Given a logical link µ ∈ EL and its mapping M(µ) = pµ,
the survivable probability of µ is Prob(µ) =

∏
e∈pµ(1 − ρe).

Similarly, the survivable probability of a logical spanning tree
τ is defined below.

Definition 2: Given a cross-layer network (GP , GL), a
protecting spanning tree and its mapping λ = [τ,M(τ)], the
survivable probability of λ is Prob(λ) =

∏
e∈EP (λ)(1− ρe).

The maximal protecting spanning tree is a protecting spanning
tree with one of its possible mappings that provide the maxi-
mal survivable probability, which is greater than or equal to the
survivable probability of any other trees and their mappings.

We now demonstrate how a protecting spanning tree set can
be used to improve the survivable probability even with a given
logical-to-physical mapping. Let T = {τ} be a protecting
spanning tree set, Λ = {λ} be the set of protecting spanning
tree and its mappings, and EMP (Λ) = ∩λi∈ΛEP (λi) be the
common physical links utilized by the routings of λi ∈ Λ.

We use Fig. 1 as an instance to illustrate the concept
of a protecting spanning tree set and survivable probability.
Given GL (top), GP (bottom), and ρe, e ∈ EP (labeled on
each physical link). Logical-to-physical link mappings are
given as follows: M(1, 2) = {(1, 5), (5, 2)}, M(1, 3) =
{(1, 4), (4, 6), (6, 3)}, M(2, 4) = {(2, 3), (3, 6), (6, 4)},
M(3, 4) = {(3, 6), (6, 4)}. We select a set of two protecting

τ M(τ) EP (λ) Prob(λ)

Red
λ1

[τ1,M(τ1)]

(1,2),
(1,3),
(3,4)

{(1, 5), (5, 2)};
{(1, 4), (4, 6), (6, 3)};
{(4, 6), (6, 3)}

{(1,4),(1,5),
(2,5),(3,6),
(4,6)}

∏
e∈EP (λ1)

(1− ρe)
= (1-0.2) (1-0.1)
(1-0.2) (1-0.1)
(1-0.1) = 0.46656

Green
λ2

[τ2,M(τ2)]

(1,2),
(2,4),
(4,3)

{(1, 5), (5, 2)};
{(2, 3), (3, 6), (6, 4)};
{(4, 6), (6, 3)}

{(1,5),(2,3),
(2,5),(3,6),
(4,6)}

∏
e∈EP (λ2)

(1− ρe)
= (1-0.1) (1-0.2)
(1-0.1) (1-0.1)
(1-0.1)=0.52488

TABLE II: Protecting spanning trees and their mappings

spanning trees: (red tree) λ1 = [τ1,M(τ1)] and (green)



Fig. 1: survivable probability of a protecting spanning tree set

λ2 = [τ2,M(τ2)], whose branches, link mappings, utilized
physical link sets, and survivable probability are presented in
Table II. When considering a protecting spanning tree set and
its mappings Λ = {λ1, λ2}, the common physical links used
by the routings of both trees are EMP (Λ) = ∩λi∈ΛEP (λi) =
{(1, 5), (2, 5), (3, 6), (4, 6)}. Therefore, any failure(s) occur
among these links would disconnect both λ1 and λ2. Hence,
the survivable probability of Λ = (1 − 0.1)(1 − 0.2)(1 −
0.1)(1− 0.1) = 0.5832 which is higher than that of either λ1

or λ2. Derived from the example above we have the following
definition.

Definition 3: Given a cross-layer network (GP , GL), failure
probability ρe, e ∈ EP , a protecting spanning tree set and
its mappings Λ = {λ}, the survivable probability of Λ is
Prob(Λ) =

∏
e∈EMP (Λ)(1− ρe).

We also define the maximal protecting spanning tree set as
a protecting spanning tree set with the maximal survivable
probability given any logical link mappings.

C. Survivable Probability, Link Mapping, and Base Protecting
Spanning Tree Set

Given a cross-layer network (GP , GL), and mappings of all
logical links M(EL) = {M(µ) : M(µ) = pµ, pµ ∈ Pµ, µ ∈
EL}. Let Ω(EL) = {M(EL)} be the set of all logical link
mappings, i.e., Ω(EL) contains all possible combinations of
logical link mappings for all logical links. In this section, we
explore the relation among (GP , GL), M(EL), and protecting
spanning tree set T . We demonstrate that the existence of
the maximal protecting spanning tree set whose survivable
probability is the same as the maximal survivable probability
of (GP , GL). We also provide the necessary and sufficient
conditions to identify such a T and then evaluate the survivable
probability accordingly. We denote the maximal survivable
probability of (GP , GL) as Φ(GP , GL).

Proposition 1: Given a cross-layer network (GP , GL), all
possible logical link mappings Ω(EL), and failure probability
ρe, e ∈ EP . The maximal survivable probability of (GP , GL),
Φ(GP , GL) = maxM(EL)∈Ω(EL)

∏
e∈R(M(EL))(1 − ρe),

where R(M(EL)) denotes a set of physical links whose
failure(s) disconnect GL with M(EL).

Proof: With Definition 1, (GP , GL)’s survivable proba-
bility is determined by physical links whose failures discon-
nect GL. For given logical link mappings M(EL), R(M(EL))
contains all physical links whose failure(s) disconnect GL.
Hence, GL remains connected if and only if none of the
links in R(M(EL)) fail. Hence,

∏
e∈R(M(EL))(1 − ρe) pro-

vides the survivable probability for (GP , GL) over a given
mapping M(EL). If Ω(EL) = {M(EL)} contains all
possible combinations of the logical-to-physical link map-
pings, Φ(GP , GL) = maxM(EL)∈Ω(EL)

∏
e∈R(M(EL))(1 −

ρe), which provides the maximal survivable probability of
(GP , GL).
With Proposition 1, (GP , GL)’s survivable probability is
determined by its logical link mapping. We let M∗(EL)
denote the logical link mapping which provides the maxi-
mal survivable probability for (GP , GL), i.e., M∗(EL) =
argM(EL)∈Ω(EL) Φ(GP , GL).

Theorem 1: Given a cross-layer network (GP , GL) and
failure probability ρe, e ∈ EP , there exists a protecting
spanning tree set and its mapping whose survivable probability
is the same as that of (GP , GL).
Please refer to Appendix A for the proof of Theorem 1. With
Theorem 1, we define the protecting spanning tree set which
provides the maximal survivable probability, i.e., Φ(GP , GL),
as a base protecting spanning tree set. We let ΛB(GP , GL)
represent a base protecting spanning tree set and its mappings
of a given cross-layer network (GP , GL).

Corollary 1: A protecting spanning tree set is a base
protecting spanning tree set if and only if it is the maximal
protecting spanning tree set.

Proof: Proof of the necessary condition: follow the proof
in Theorem 1.
Proof of the sufficient condition: by contradiction. If there
exists a protecting spanning tree set with higher survivable
probability than that of the base protecting spanning tree set,
it leads to higher survivable probability. Contradiction!
With Lemma 1 in Appendix A, given a survivable routing,
every physical link is protected by a least one protecting
spanning tree. A base protecting spanning tree set also protects
all physical links. In other word, EMP (EL) = ∅. Hence, a sur-
vivable cross-layer network has 100% survivable probability
against arbitrary physical link failure. Therefore, the survivable
cross-layer network design problem with guaranteed 100%
survivable probability is a subproblem of the cross-layer
network design with maximal survivable probability.

D. Unified Physical Link Failure Probability

Unified probability of failure, where the failure probability
for all physical links is the same (i.e., ρe = ρ with e ∈ EP ), is
a special case of random physical link failure. We first study
the maximal protecting spanning tree and have the following
conclusion.

Proposition 2: Given (GP , GL) and physical link failure
probability, ρe = ρ with e ∈ EP , the maximal protecting
spanning tree is a tree τ with the minimal number of physical
links utilized in M(τ).



Proof: Based on Definition 2, the maximal survivable
probability of τ and its mapping is max

∏
e∈EP (λ)(1 − ρe)

= max(1 − ρ)|EP (λ)| (because ρe = ρ). Thus, λ with
min |EP (λ)| will produce the maximal survivable probability.

Theorem 2: Given (GP , GL) and unified failure probability
ρ, a base protecting spanning tree set and its mapping with
min |EMP (ΛB(GP , GL))| provides the maximal survivable
probability of (GP , GL) as (1− ρ)min |EMP (ΛB(GP ,GL))|.

Proof: With Definition 3, the survivable probability of
a base protecting spanning tree set and its mapping is
Prob(ΛB(GP , GL)) =

∏
e∈EMP (ΛB(GP ,GL))(1 − ρe) = (1 −

ρ)|E
M
P (ΛB(GP ,GL))|. According to Corollary 1 and Proposi-

tion 2, minimizing |EMP (ΛB(GP , GL))| leads to Φ(GP , GL),
the maximum Prob(ΛB(GP , GL)).
Based on Theorem 2, finding survivable probability of
(GP , GL) with unified failure probability is equivalent to
solving a cross-layer network design problem targeting the
minimal number of shared physical links in its logical link
mappings. The above proof also demonstrates that a base
protecting spanning tree set and its mappings can provide
a (partially) survivable network design along with a more
precise evaluation metric on its reliability. Note that Theorem 2
only holds when all physical links have the unified failure
probability. If considering random link failure probabilities,
the minimal set of physical links whose failures disconnect
the logical network may not be equivalent to EMP (M(EL)),
thus leads to a survivable probability different from that of the
cross-layer network.

Compared with the approach considered in [41] where the
reliability of a cross-layer network is approximated through
the failure polynomials generated by enumerating exponential
number of cross-layer cutsets with unified link failure proba-
bility, the base protecting spanning tree set can provide exact
calibration of survivable probability under both unified and
random physical link failure probabilities.

IV. SOLUTION APPROACH

Based on Theorems 1 and 2, we present in this section the
mathematical programming formulations to compute surviv-
able probability of a cross-layer network. We first present the
formulation for survivable probability with unified physical
link failure probability as a special case in Section IV-A,
followed by a generalized formulation addressing random
probabilities of failure in Section IV-B. Variables and param-
eters used in the formulations are listed in Table III.

A. Survivable Probability of Cross-layer Networks with Uni-
fied Physical Link Failure Probability

We first present a mixed-integer programming formulation
to generate the maximal protecting spanning tree, followed by
a formulation to generate a base protecting spanning tree set.

1) Maximal Protecting Spanning Tree: Given unified fail-
ure probability ρ on physical links, we propose a mixed integer
programming formulation with the objective to minimize the

number of physical links utilized in tree branches’ routings
(based on Proposition 2).

min
x,y,z

∑
(i,j)∈EP

xij

s.t.
∑

(i,j)∈EP

ystij −
∑

(j,i)∈EP

ystji =

 zst, if i = s,
−zst, if i = t,

0, if i 6= {s, t},
(1)

ystij + ystji ≤ xij , (s, t) ∈ EL, (i, j) ∈ EP (2)∑
(s,t)∈EL

zst −
∑

(t,s)∈EL

zts =

{
|VL| − 1, if s = s0

−1, if s 6= s0, s ∈ VL
(3)∑

(s,t)∈EL

zst = |VL| − 1, (i, j) ∈ EP (4)

xij , y
st
ij , zst ∈ {0, 1}, (s, t) ∈ EL, (i, j) ∈ EP (5)

Constraint (1) maps logical links onto physical paths and
selects logical links forming a logical spanning tree, in which
zst on the right hand side indicates whether (s, t) is a branch
of a logical spanning tree or not. Constraint (2) indicates
which physical links are utilized by the routings of a selected
protecting spanning tree. Constraints (3) and (4) form a pro-
tecting spanning tree corresponding to the logical link mapping
generated by constraint (1). Constraint (5) provides the feasible
regions for all decision variables.

2) Base Protecting Spanning Tree Set: The above formula-
tion generates a maximal protecting spanning tree. Extending
the formulation, we now present a mixed-integer programming
formulation to compute the survivable probability with unified
physical link failure probability. Based on Corollary 1 and
Theorem 2, the proposed formulation has the objective to

Variable Description
xij Binary variable indicating whether (i, j)’s failure

disconnects the logical network. If yes, xij = 1;
otherwise, xij = 0

ystij Binary variable indicating whether logical link (s, t)
is routed through physical link (i, j) or not. If yes,
ystij = 1; otherwise, ystij = 0

zst Binary variable indicating whether logical link (s, t)
is connected and forms a protecting spanning tree. If
yes, zst = 1; otherwise, zst = 0

wijst Binary variable indicating whether logical link (s, t)
is connected and forms a protecting spanning tree
after physical link (i, j) failed. If yes, zijst = 1;
otherwise, zijst = 0

gij Binary variable indicating whether physical link
(i, j) is shared by trees in a base protecting spanning
tree set. If yes, gij = 1; otherwise, gij = 0

Parameter Description
cij The coefficient for physical link. With unified failure

probability, cij = 1; with random physical link
failure probability, cij = − ln(1− ρij)

TABLE III: Variables and parameters used in mathematical
formulations



minimize the total number of physical links shared by M(T )
of a protecting spanning tree set T .

min
g,w,y

∑
(i,j)∈EP

gij

s.t.
∑

(i,j)∈EP

ystij −
∑

(j,i)∈EP

ystji =

 1, if i = s,
−1, if i = t,
0, if i 6= {s, t},

(6)

wijst ≤ 1− (ystij + ystji), (s, t) ∈ EL, (i, j) ∈ EP (7)∑
(s,t)∈EL

wijst −
∑

(t,s)∈EL

wijts =

(1− gij), if s = s0

(gij − 1)/(|VL| − 1),
if s 6= s0, s ∈ VL

(8)

ystij ,gij ∈ {0, 1}, w
ij
st ≥ 0, (s, t) ∈ EL, (i, j) ∈ EP (9)

Similar to constraint (1), constraint (6) generates physical
paths for logical links which are branches of a spanning tree
in a base protecting spanning tree set. Constraints (7)–(8)
generate a protecting spanning tree after any physical link’s
failure if the physical link is protected; otherwise, the physical
link is identified as unprotected. With the information of
unprotected physical links, the generated protecting spanning
tree set where each of its element protects at least one physical
link is then identified as a base protecting spanning tree set.
Constraint (9) provides the feasible regions for all decision
variables.

B. Survivable Probability of Cross-Layer Networks with Ran-
dom Physical Link Failure Probability

In this section, we discuss a more generalized and realistic
physical link failure scenario, where the physical link failure
probability is not unique. Based on Corollary 1, the objective
used to select a base protecting spanning tree set is as follows.

max
Λ

∏
e∈EM

P
(Λ)

(1− ρe) (10)

Constraint (10) is nonlinear. Applying the ln function to this
constraint converts it into the linear form.

max
Λ

∑
e∈EM

P
(Λ)

ln(1− ρe). (11)

We let cij be the weights on physical links. cij = 1 for unified
physical link failure probability, and cij = − ln(1 − pij) for
random probabilities of link failure. The generalized formula-
tion for the survivable probability of a cross-layer network is
then

min
y,g

∑
(i,j)∈EP

cijgij

s.t. Constraints (6) – (9) (12)

Note that with unified failure probability, the formulation for
base protecting spanning tree set is to minimize the total
number of shared physical links. But with random failure
probability, after linearization, the objective is to maximize

the total weight of the shared physical links with non-positive
physical link weights, because physical link failure probability
is in [0, 1] and the value ln(1 − pe) is non-positive. When
we let the physical link weight cij be − ln(1 − pij) with
(i, j) ∈ EP as the non-negative weight, the generalized
objective becomes minimizing the total weight (non-negative)
of the shared physical links.

V. PROTECTING SPANNING TREE V.S. STEINER TREE

In this section, we discuss the relationship between a
protecting spanning tree in a cross-layer network and a Steiner
tree in the physical network whose terminal nodes are the
physical nodes corresponding to the logical nodes and Steiner
nodes are a subset of the remaining physical nodes. First, we
show that the maximal protecting spanning tree in a cross-layer
network is a minimum Steiner tree in its physical network
in which the terminal nodes are a subset of physical nodes
onto which logical nodes are mapped. This conclusion leads
to a factor ln 4 + ε approximation algorithm for the maximal
protecting spanning tree in a cross-layer network. Motivated by
the conclusion, we further study the relationship between sur-
vivable cross-layer network design and edge-disjoint Steiner
tree packing problem (with 100% survivable probability). We
demonstrate that the existence of edge-disjoint Steiner tree
packing with logical network augmentation provides necessary
and sufficient conditions for survivable cross-layer routing.

A. Maximal Protecting Spanning Tree v.s. Minimum Steiner
Tree

The minimum Steiner tree problem [42] is defined as
follows.

Problem 1: The minimum Steiner tree problem [43]
INSTANCE: Graph G = (V,E), edge cost c : E → R+, a set
of terminal nodes S ⊆ V .
SOLUTION: A tree γ = (Vγ , Eγ) in G such that Eγ ⊆ E
and S ⊆ Vγ ⊆ V with s ∈ S
OBJECTIVE: Minimize cost function

∑
e∈Eγ c(e).

The minimum Steiner tree problem is NP-hard [42] and has
a factor (ln 4 + ε) approximation algorithm [44]. Its special
case in a planar graph is polynomial solvable in O(3kn +
2k(n log n+m)), where n = |V |, k = |S|, and m = |E| [45].

We now demonstrate that the maximal protecting spanning
tree problem is the minimum Steiner tree problem in a physical
network. Let V LP be a set of physical nodes which logical
nodes are mapped onto.

Theorem 3: Given a cross-layer network (GP , GL), the
maximal protecting spanning tree and its mapping λ∗ =
[τ∗,M(τ∗)]. M(τ∗) is the minimum Steiner tree in GP with
V LP as the terminal nodes and ce = − ln(1 − ρe) as the link
costs.
The proof of Theorem 3 is given in Appendix B.

Corollary 2: Given a cross-layer network (GP , GL) and
failure probability ρe with e ∈ EP , a factor (ln 4 + ε)
approximation algorithm exists for the maximal protecting
spanning tree problem. If GP is a planner graph, a polynomial



algorithm exists for the maximal protecting spanning tree
problem.
Let GP = (VP , EP ) be the physical network, V LP be the
terminal node set, and VP \ V LP be the superset of the Steiner
node set. Each physical link is assigned a non-negative cost
ce = − ln(1−ρe) with e ∈ EP . Based on Theorem 3, we can
apply the factor (ln 4 + ε) approximation algorithm in [44],
and the maximal protecting spanning tree can be approximated
by a ln 4+ε factor. Furthermore, a polynomial-time algorithm
with complexity O(3kn+ 2k(n log n+m), where n = |VP |,
k = |V LP |, and m = |EP | [45] exists for the maximal cross-
layer protecting spanning tree problem, which only requires
the physical network to be planar.

B. Survivable Cross-layer Network Design with Augmentation
v.s. Steiner Tree Packing

Motivated by the construction of the maximal protecting
spanning tree via a minimum Steiner tree in the physical
network, if considering multiple protecting spanning trees, it
leads us to the problem of packing edge-disjoint Steiner trees
described below.

Problem 2: Packing edge-disjoint Steiner trees [43]
INSTANCE: An undirected multigraph G = (V,E), and a set
of terminal nodes S ⊆ V .
SOLUTION: A set Γ = {γ1, · · · , γm} of Steiner trees γi for
S in G which have pairwise disjoint sets of edges.
OBJECTIVE: Maximize |Γ|.

[46] proved that finding two edge-disjoint Steiner trees is NP-
hard. Next, we build the connection between survivable cross-
layer network design with logical augmentation and Steiner
tree packing. We define the link augmentation as follows.

Definition 4: Logical link augmentation [39]
Given a cross-layer network (GP , GL) and a logical link µ =
(s, t) ∈ EL. An augmented logical link µ′ is a link parallel to
µ, and M(µ) and M(µ′) are edge-disjoint.

Theorem 4: Given a cross-layer network (GP , GL). Let V LP
be the set of physical nodes corresponding to the logical nodes.
If 2 edge-disjoint Steiner trees are packed in GP , where V LP
are the terminal nodes and VP \ V LP is the superset of the
Steiner nodes, the survivability of the cross-layer routing is
guaranteed with logical link augmentation.

Proof: Given a logical link µ = (s, t) ∈ GL, let µ′ be
the augmented logical link of µ. With Definition 4, M(µ)
and M(µ′) are edge-disjoint. 2 edge-disjoint Steiner trees in
GP with V LP as their terminal nodes guarantee the existence
of two edge-disjoint paths p1 and p2 connecting i and j with
M(s) = i, M(t) = j, and i, j ∈ V LP . Hence, after any physical
link failure, s and t remain connected. Thus, the two edge-
disjoint Steiner trees actually provide two protecting spanning
trees in the logical network, which guarantee the connectivity
of logical network after the failure of any physical link.
With Theorem 4, we have the following conclusions for the
necessary condition to identify the survivability of a cross-
layer network with logical link augmentation.

Corollary 3: Given GP = (VP , EP ), if VP \V LP is 13-edge
connected, then, 2 edge-disjoint Steiner trees exists.
The conclusion directly follows [47] that if the terminal nodes
are 6.5k-edge connected, there exists k edge-disjoint Steiner
trees. Note here that two special cases require less edge
connectivity on terminal nodes, namely k-regular graph [48]
and planar graph [49].

Furthermore, solution approaches solving edge-disjoint
Steiner tree packing lead to solution approaches for survivable
cross-layer routing design with logical link augmentation,
which has a factor O(

√
|VP | log |VP |) approximation algo-

rithm [50].
Theorem 4 demonstrates that the cross-layer network design

problem can be solved as its single-layer network counterpart
with logical link augmentation. However, the same claim does
not hold if the logical augmentation is not allowed.

VI. SIMULATION STUDY

In this section, we present our simulation design, testing
cases setup, simulation results and observations. The goal is
to validate and demonstrate the effectiveness of the proposed
base protecting spanning tree set in calibrating the survivable
probability which supporting network slicing over small and
median-size cross-layer networks.

A. Objectives for Simulations

The testing cases and simulations are designed to verify that
(1) given a survivable cross-layer network, our base protecting
spanning tree set approach should provide 100% survivable
probability regardless of the probability of failure on physical
links; (2) with unified failure probability, the minimal number
of shared physical links in the logical-edge-to-physical-path
mappings result in the same survivable probability as that
of the base protection spanning tree set; (3) the maximal
protecting spanning tree provides a lower bound estimation
for the survivable probability of a cross-layer network; also,
we want to know how tight the lower bound estimation
performs numerically; and (4) the survivable probability can
be an evaluation metric for both survivable and non-survivable
networks with either unified or random probabilities of failure
on physical links. Last but not least, we want to observe and
report the behaviors between survivable and non-survivable
cross-layer networks with either uniform or random failure
probabilities, which may provide insights/directions for future
studies.

B. Simulation Setup

Based on the objectives above, we now present the selec-
tion of small and medium size cross-layer networks, failure
probabilities, and the composition of testing cases.

1) Small Size Cross-layer Network with NSF as the Physical
Network: We first select NSF network as a small-size physical
network and create two logical networks denoted as “LN1”
and “LN2”. All networks are illustrated in Figs. 2 and 3.
Two cross-layer network mappings are created: LN1-over-
NSF, and LN2-over-NSF. We apply the survivable cross-
layer routing MIP formulation (SUR-TEST) (see Appendix C)
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which verifies that LN1-over-NSF is survivable and LN2-over-
NSF is non-survivable.

PhyNet LogNet Suv nSuv FPbRg uFPb rFPb NumFPb
Mean Vrn uFPb rFPb

NSF LN1 1 0 [15%,0%) 0.1% 0.5% 2% 150 30
NSF LN2 0 1 [15%,0%) 0.1% 0.5% 2% 150 30

CORONETCLN1 9/40 31/40 [15%,0%) - 0.5% 2% - 30
CORONETCLN2 7/40 33/40 [15%,0%) - 0.5% 2% - 30

TABLE IV: Parameters for testing cases

2) Medium Size Cross-layer Network with CORONET as
the Physical Network: To further validate the scalability of our
proposed approach, we select the CORONET network [52] as
the physical network, which has 75 nodes, 99 links, and an
average nodal degree of 2.6. With CORONET as the physical
network, we create 80 logical networks; half of them have

nodes randomly selected from 20% of the physical nodes
(denoted as CLN1), and the other half have 30% (denoted as
CLN2). The average nodal degree for all logical networks is
4. With the logical nodes in CLN1 and CLN2, we generate the
cross-layer networks as follows. We first generate a random
spanning tree, and then utilize the Erdős-Rényi random graph
model [53] to guarantee the connectivity of logical nodes.
Finally, random logical-to-physical node mapping are con-
structed. Out of all generated cross-layer networks, we report
the number of survivable and unsurvivable cases in Table IV,
which are all validated by the SUR-TEST MIP formulation.

3) Probability of Failure on Physical Links: The failure
probabilities are chosen as follows. The unified failure prob-
ability ρ is selected in the range of 15.0% ≥ ρ > 0% with
0.1% per step. In total, we have 150 uniform probabilities
[15%, 14.9%, . . . , 0.2%, 0.1%].

For the random failure probabilities, we generate them based
on the normal distribution with the mean from 15.0% to
0%, 0.5% per step, and the variance is 2%. Note here that
the randomly generated probabilities are selected if less than
100%. In total, we have 30 random failure probabilities.

4) Testing Cases: Parameters to construct all simula-
tion cases are presented in Table IV, in which “PhyNet”,
“LogNet”,“Suv”,“nSuv”,“FPbRg”,“uFPb” denote the physical
network, logical network, the number of survivable and non-
survivable cases, the range of failure probabilities, and the
incremental step width of unified failure probability. Let
“rFPb”“Mean”,“Vrn” be random failure probability, mean/step
width, and variance; and let “NumFPb”,“uFPb”, and “rFPb”
indicate the total number of unified failure probabilities, and
the total number of random failure probabilities for each
cross-layer network. The simulation results for all these cases
are grouped by the failure probabilities, survivability of the
networks, and the size of networks (small and medium).

The performance of the simulations with unified failure
probability is only reported with two cross-layer networks,
namely LN1-over-NSF and LN2-over-NSF, where the NSF
network in both of them is associated with the 150 failure
probabilities mentioned above. Similarly, we also evaluate
each of them with randomly generated failure probabilities.

Since the unified failure probability is a special case of the
random failure probability, we only consider random failure
probabilities in the medium-size cross-layer networks based
on the generation of CLN1-over-CORONET and CLN2-over-
CORONET. 30 failure probabilities are generated for each
of the medium-size networks, and these testing cases are
grouped and reported by the mean of failure probability and
its survivability. Note here that as part of the validation,
LN1-over-NSF and the survivable medium-size networks are
expected to reach 100% survivable probability regardless of
their failure probabilities.

C. Simulation Results

In this section, we report the simulation results based on
the testing cases described above.
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Fig. 5: Survivable probability with unified failure probability
for small-size cross-layer networks
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Fig. 6: Survivable probability with random failure probability
for small-size cross-layer networks

1) Small-size Cross-layer Networks: The computational
results for the survivable probability of the maximal protecting
spanning tree and base protecting spanning tree set are denoted
as “MaxPrctTree” and “BasePrctTreeSet”, respectively.

Figures 5 and 6 illustrate the survivable probability of
MaxPrctTree and BasePrctTreeSet for LN1-over-NSF and
LN2-over-NSF with unified and random failure probabilities,
respectively. These results validate our proposed solution
approach as follows: (1) all testing cases for the survivable
LN1-over-NSF network are with 100% survivable probability
through the base protecting spanning tree set, regardless of
the values/distribution of the failure probabilities; (2) with the
unified failure probability, the minimal number of physical
links shared by the trees in the base protecting spanning tree
set, denoted as kmin, is 3 in the LN1-over-NSF network. We
validate that the survivable probability obtained by the base
protecting spanning tree approach, illustrated in Fig. 5, which
matches (1−ρ)kmin . These results provide the numerical proof
for Theorem 2; (3) the curves of survivable probabilities of
MaxPrctTree and BasePrctTreeSet over randomly generated
failure probabilities are not smooth. But in general, their sur-
vivable probabilities are still monotonically increasing while
the mean of the failure probability decreases. In other word,
as expected, the lower the failure probability, the higher the
survivable probability of MaxPrctTree and BasePrctTreeSet
are achieved; and (4) the base protecting spanning tree ap-
proach works for both survivable and non-survivable cross-
layer networks.

To demonstrate that the MaxPrctTree may be used to
estimate the lower bound of survivable probability, Fig. 7
illustrates the ratio of the maximal protecting spanning tree’s
survivable probability to the survivable probability of a cross-
layer network (through a base protecting spanning tree set).
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Fig. 7: Survivable probability ratio between the maximal
protecting spanning tree and a base protecting spanning tree
set
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Fig. 8: Survivable probability with unified failure probability
for medium-size survivable cross-layer networks
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Fig. 9: Survivable probability with random failure probability
for medium-size non-survivable cross-layer networks

These results show that for all testing cases, the survivable
probability of BasePrctTreeSet is higher than that of MaxPrct-
Tree. The lower the probability of failure on physical links,
the better the lower bound estimation the maximal protecting
spanning tree can provide. With up to 15% of the average
failure probability, the lower bound estimation is higher than
1
2 of the survivable probability of all the generated cross-layer
networks.

2) Medium-size Cross-layer Networks: Figs. 8 and 9 il-
lustrate the survivable probability of the survivable and non-
survivable cross-layer networks, respectively, where each test-
ing instance is with random failure probabilities on physical
links. Figs. 10 and 11 present the survivable probability ratio
of MaxPrctTree to BasePrctTreeSet for all network instances
in box plots, which are grouped by their respective failure
probabilities. These results further validate our proposed
solution approaches that (1) for all survivable cases (veri-
fied by the SUR-TEST formulation), our approaches produce
100% survivable probability; (2) the survivable probability
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Fig. 10: Survivable probability ratio of MaxPrctTree to
BasePrctTreeSet for survivable medium size networks
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Fig. 11: Survivable probability ratio of MaxPrctTree to
BasePrctTreeSet for non-survivable medium-size networks

of BasePrctTreeSet is higher than that of MaxPrctTree for
all testing cases; (3) with larger logical networks (CLN2),
more physical links are utilized by logical link mappings,
which bring down the survivable probability of MaxPrctTree
significantly compared with the smaller-size ones.

The computational time of all MIP formulations are finished
within 15 minutes, thus our proposed solution approaches
can produce results effectively at least for the medium-size
networks.

We also observe some interesting facts which may direct our
future studies on network properties. (1) The average surviv-
able probability ratio for both survivable and non-survivable
networks is monotonically increasing when failure probability
decreases. (2) When failure probability decreases, gaps of
the survivable probability ratios for all tested survivable net-
works are increasing (see Fig. 10; and the gaps of survivable
probability ratios for all tested non-survivable networks are
decreasing (see Fig. 11). (3) In general, the computational
time for the survivable cases is higher than that of the non-
survivable ones.

VII. CONCLUSION

In this paper, we introduced a new evaluation metric,
the survivable probability, to evaluate the probability of the
logical network to remain connected against physical link
failure(s) with either unified or random failure probabilities.
We explored the exact solution approaches in the form of
mathematical programming formulations. We also discussed
the relationship between the survivable probability of a cross-
layer network and the protecting spanning tree set, which led
to the base protecting spanning tree set approach. We proved
the existence of a base protecting spanning tree set in a given
cross-layer network and its necessary and sufficient conditions.

We demonstrated that cross-layer network survivability may
be solved or approximated through the single-layer network
structures with some techniques such as logical augmentation
and some criteria such as planar graphs. Our simulation results
showed the effectiveness of proposed solution approaches.

APPENDIX A
PROOF OF THEOREM 1

Given a cross-layer network (GP , GL), a set of all logical-
to-physical link mappings Ω(EL), and a logical link mapping
M(EL) ∈ Ω(EL). We let ΛF (M(EL)) = [T F ,M(EL)] be a
protecting spanning tree set (containing all protecting spanning
trees mathcalTF ) with logical link mapping M(EL).

Lemma 1: Given (GP , GL), TF , and ΛF (M(EL)). GL
remains connected after any physical link failure if and only
if a protecting spanning tree τ exists which protects physical
link e, with e ∈ EP , τ ∈ TF (M(EL)).

Proof: Proof of the necessary condition: given M(EL) ∈
Ω(EL), if GL remains connected after the failure of e, then, a
logical spanning tree τ exists with branch mapping M(τ) ⊂
M(EL).
Proof of sufficient condition: if a protecting spanning tree τ ∈
TF protects e, then, e /∈ EP (τ). Hence, after e’s failure, τ
guarantees the connectivity of GL.
With Lemma 1, if GL is disconnected due to the failure of
e, then, no protecting spanning tree exists to protect e for the
given TF and its mappings.

Lemma 2: For a logical link mapping M(EL) ∈ Ω(EL),
R(M(EL)) = EMP (ΛF (M(EL))).

Proof: We first prove that R(M(EL)) ⊆
EMP (ΛF (M(EL))). Given e ∈ R(M(EL)), with Lemma 1,
no protecting spanning tree exists for e. Then, we
have e /∈ EP \ EP (λ) with λ ∈ ΛF (M(EL)). Hence,
e /∈ ∪λ∈ΛF (M(EL))EP \ EP (λ). Let Ac be the complement
of set A. Then, e ∈ [∪λ∈ΛF (M(EL))EP \ EP (λ)]c.
We have e ∈ ∩λ∈ΛF (M(EL))EP (λ). Therefore,
R(M(EL)) ⊆ EMP (ΛF (M(EL))).
We now prove that EMP (ΛF (M(EL))) ⊆ R(M(EL)). Given
a physical link e ∈ EMP (ΛF (M(EL))), then, e ∈ EP (λ)
for all λ ∈ ΛF (M(EL)). With Lemma 1, no protecting
spanning tree protects e, hence, e ∈ R(M(EL)). Therefore,
EMP (ΛF (M(EL))) ⊆ R(M(EL)).
Theorem 1: For a cross-layer network (GP , GL), there exists
a protecting spanning tree set which has the same survivable
probability as that of (GP , GL).

Proof: We let M∗(EL) be the logical link mapping
with the maximal survivable probability, i.e., M∗(EL) =
argM(EL)∈Ω(EL) max

∏
e∈R(M(EL))(1− ρe). Let M ′(EL) be

the logical link mapping for the maximal survivable prob-
ability of a cross-layer spanning tree set, i.e., M ′(EL) =
argM(EL)∈Ω(EL) max

∏
e∈EMP (Λ(M(EL)))(1 − ρe). We now

prove that M∗(EL) = M ′(EL).
With Lemma 2, we have R(M∗(EL)) = EMP (ΛF (M∗(EL)))
and R(M ′(EL)) = EMP (ΛF (M ′(EL))).

With the definition of M∗(EL) and M ′(EL), we have∏
e∈EMP (ΛF (M ′(EL)))(1 − ρe) =

∏
e∈R(M ′(EL))(1 − ρe) ≤



∏
e∈R(M∗(EL))(1 − ρe); and

∏
e∈R(M∗(EL))(1 − ρe) =∏

e∈EMP (ΛF (M∗(EL)))(1−ρe) ≤
∏
e∈EMP (ΛF (M ′(EL)))(1−ρe).

Hence,
∏
e∈R(M∗(EL))(1 − ρe) =

∏
e∈EMP (ΛF (M∗(EL)))(1 −

ρe). The conclusion holds.

APPENDIX B
PROOF OF THEOREM 3

Lemma 3: Given a cross-layer network (GP , GL), and
the maximal PST τ∗ and its mapping λ∗ = [τ∗,M(τ∗)].
M(τ∗) = (V LP , E(M(τ∗))) is a tree in GP .

Proof: We prove this conclusion by contradiction. Given
a maximal protecting spanning tree and its mapping, λ∗.
Since τ∗ is a logical spanning tree and M(τ∗) is its
mapping onto GP , physical nodes in V LP are connected.
With the maximal protecting spanning tree, we have τ∗ =
argτ∈{τ}max

∏
e∈E(M(τ))(1−ρe). The max

∏
e∈E(M(τ))(1−

ρe) leads to min
∑
e∈E(M(τ)) ce. As discussed earlier, we

consider ce = − ln(1− ρe) as the edge cost.

If M(τ∗) is not a tree in GP , then, at least a cycle exists
in M(τ∗), denoted as ς = (V LP , Eς) ⊆ GP . By removing an
edge subset of ς , a spanning tree could be constructed with
V LP remaining connected; otherwise, V LP is not fully connected
in M(τ∗), which contradicts the condition that M(τ∗) is
connected and with minimal weight (after removing edges in
ς). Hence, the conclusion holds.

Proof of Theorem 3: With Lemma 3, M(τ∗) connects
V LP without cycles. Taking V LP as terminal nodes and VP \V LP
as the superset of Steiner nodes, M(τ∗) constructs a spanning
tree connecting all V LP via nodes in VP \V LP and edges in EP .
Meanwhile, with edge cost ce = − ln(1−ρe),

∑
e∈E(M(τ∗)) ce

is minimal as λ∗ = [τ∗,M(τ∗)] is the maximal protecting
spanning tree and its mapping. Hence, the conclusion holds.

APPENDIX C
MIP FORMULATION FOR SURVIVABLE CROSS-LAYER

NETWORK ROUTING

We utilize the following MIP formulation [39] (SUR-TEST)
to test whether a a cross-layer network is survivable or not.
The definitions of variables are in Table III. After executing
the formulation, if a feasible solution exists, the cross-layer
network is survivable; otherwise, the cross-layer network is

non-survivable.

min
∑

(i,j)∈EP

yij

s.t.
∑

(i,j)∈EP

ystij −
∑

(j,i)∈EP

ystji =

 1, if i = s,
−1, if i = t,
0, if i 6= {s, t},

(13)

wijst ≤ 1− (ystij + ystji), (s, t) ∈ EL, (i, j) ∈ EP (14)∑
(s,t)∈EL

wijst −
∑

(t,s)∈EL

wijts =

 1, if s = s0

−1/(|VL| − 1),
if s 6= s0, s ∈ VL

(15)

ystij ∈ {0, 1}, w
ij
st ∈ [0, 1], (s, t) ∈ EL, (i, j) ∈ EP (16)
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